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PREFACE. 

HIS tract is intended to give an account of the theory of equations 

according to the ideas of Galois. The conspicuous merit of this 

method is that it analyses, so far as exact algebraical processes permit, 

the set of roots possessed by any given numerical equation. To 

api#eciate it properly it is necessary to bear constantly in mind the 

difference between equalities in value and identities or equivalences in 

forn; I hope that this has been made sufficiently clear in the text. 

method of Abel has not been discussed, because it is neither so 

r nor so precise as that of Galois, and the space thus gained has 

1 filled up with examples and illustrations. 

ore than to any other treatise, I feel indebted to Professor 

Weber’s invaluable Algebra, where students who are interested 

the arithmetical branch of the subject will find a discussion of 

ous types of equations, which, for lack of space, I have been 

pelled to omit. 

I am obliged to Mr Morris Owen, a student of the University 

ege of North Wales, for helping me by verifying some long cal- 

ions which had to be made in connexion with Art. 52. 

Fl G. B. M. 
© 
. BANGOR, 

2 August, 1907. 
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CHAPTER I. 

| GALOISIAN GROUPS AND) RESOLVENTS. 

| 

1. Suppose that c,, c,...c, form a set of assigned algebraic 
quantities, and that 

ey a+ 60°) + Op OO + AC 

If we can find another set of algebraic Fanatiiies Hy, Ha, «+» Vy Such 
that | 

ee Cy, DLW = Cs, okey Ly Qo) «.< Big = (—) "lp, won eedav' (1) 

we shall have identically 

| f(a) = (@— a) (@— a) «.. (aw ~ a) 
Under these circumstances (supposing that the algebra we are 

using is the ordinary one) 

| F(x) =0 
for #=%, 2, ... £, and for no other values of z. 

- hus every solution of (1) leads to the complete solution of the 
equation /(#)=0. Conversely the complete solution of f(x) = 0 in the 

form aw=€,, &, ... & leads to the complete solution of (1), considered 

as a system of simultaneous equations, in the form 

7 V1, Vy, ves Bn = Eq, &,, oes §, 

where €,, &,...& represents, in turn, every permutation of 
| Gig eaptencen: 
f If the values ¢,, &, ... €, are all distinct, f(v) =0 has no multiple 

roots, and the solutions of the simultaneous equations are all distinct, 
-and are 2! in number. 

If f(x) =0 has multiple roots, its solution may be made to depend 
upon an equation without multiple roots. Suppose, for example, that 

f(x) has a root 7 of multiplicity a; then the first derived function 
J, (a), that is to say df/da, has a root r of multiplicity (2-1). Hence 

M. 1 



2 GROUPS AND RESOLVENTS [OH. I 

if 6=dv(f, A), the highest common factor of f and f,, the equation 

J/¢=0 has coefficients which are rational functions of G, G, ..- Cn; 

and its roots are the distinct roots of f(#), each occurring only once. 
Moreover; if f;=d'f/da", we can, by finding dv(f,, fs), dv (fa, fs) and 

so on, determine by rational operations the exact multiplicity of any 
repeated root of f=0: hence the complete solution of f/¢ = 0 leads to 

that of f=0. In all that follows it will be assumed that / has no 
multiple roots. } 

2. It has been proved in various ways that the roots of f(a) =0 
actually exist ; that is to say, if real or complex values be assigned, at 
pleasure, to the coefficients, then there are exactly determinate real 
or complex numbers 2, 22, ... % such that | 

f(a)=1 (wv - a) 
for all values of 2. Another theorem which will be assumed throughout 
is that every rational symmetric function of the roots can be expressed 

as a rational function of the coeficients. \ 
\ 

3. What gives special interest to the subject in hand is that the 
actual determination of the roots of a given equation is a problem 
which differs in complexity according to the assumptions made with 

regard to the coefficients, and the value of ». Thus, if m <5, and the 
coefficients are left arbitrary, it is possible to construct an ancien 
algebraic function of the coefficients which is a root of the equation. 
For n > 4, this is no longer the case ; a fact first proved by Abel, }who 

also perceived the real reason for the limitation, namely, the spéecial 
properties of the group of permutations of m different things when 
m< 0d. 

When the coefficients are numerically given, the rational roots, if 

any exist, can be found by trial, and the values of the irrational ones — 

can be found by approximation. With these processes of approximation, 
however, we shall not be concerned ; our main problem is, in fact, the 
following: . ’ 

Given a particular equation with numerical coefficients, it is re- 
quired to find the simplest set of irrational quantities such that all the — 

roots of the gwen equation can be expressed as finite rational functions, 

in an explicit form, of the set of irrationals. What is to be understood 

by the s¢mplest set of auxiliary irrationals will appear as we proceed. 

4. Before entering upon the general theory, it will be useful to 
consider the case of a cubic equation with arbitrary coefficients, and 
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roots a, 8B, y. Since the value of a+ 8+y is known, it will be sufficient 

if we can find the values of two other independent linear functions of 
the roots. If we take an arbitrary linear function a + JB + my, this will, 
in general, assume six values by the permutation of a, 8, y: these 
values will be the roots of an equation 

y+ my +... +m =0 

the coefficients of which are rational in /, m and known quantities. Let 

us try to make this a quadratic in vy’. Then if » is a complex cube 
root of unity, there will be six roots of the form 

Yr» Yi, wy, Yo, Yo, w'Yg. 

Assuming, as an identity independent of a, B, y, 

a+IB+my=wo(B + ly+ma) 

we have /=o, m=’: so that we obtain a function 

Yy = a+ wB + wy 

the values of which, when a, 8, y are interchanged, become 

Yo=a+u'B + wy, 

Y3=wa + oB+ y= oO'Ys, 
Yy= oat wh + y=, 

Ys = 00+ B+ wy = wy, 

Yg=wat B+ wy =0'y. 
Consequently 

gr + yp = (a+ of + wry) + (a+ WB + wy) = A, 
a quantity symmetrical in a, B, y, and therefore rational in the 

coefficients of the given cubic ; in fact, 

A = 23a’ — 33078 + 120By =— 2,7 + 9c,C, — 27¢3. 

Similarly Yo = Ya? — YaB =c,—38c,=B 

another rational function of the coefficients: so that y,’, y.° are the 
roots of the rational equation 

yi - Ay? + BP =0. 
2 3\) 1 

Let 6 = [Arve ss ue aah i 

with a fixed determination of the radicals involved. Then we may 

put 
a+ B+ GS atin Fe 

a + wf + wy = 6, 

a+wB + wy = B/6, 
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and hence 

3a =—¢c,+6+ B/O=—ct+O+ 

8B=-¢,+0°9+o0B/0=..., 

8y =—¢,+ 064+ 07B/6=.. 

By giving @ all its six values, we APs all the six permutations of 

a, B, y. % 
It will be noticed that the success of this method depends on finding 

a power of a linear function of the roots which is a two-valued function 

of the coefficients ; this has been done with the help of an auxiliary 

number » which is a root of the rational quadratic w? + o + 1=0. 
In a similar way for the general quartic 

(a—B+y-8)? 
is a three-valued function of the coefficients, and may be explicitly 

found by means of an auxiliary rational cubic; after this the solution 

of the quartic may be completed. 

Ae JA? gf 4. B®) 62 

2.5” : 

5. If, after the manner of Lagrange, we try to extend this process 
to a quintic, we take «, a complex fifth root of unity, and form the 
rational equation satisfied by 

(a, + €ay +2 a, + Pay + e425)’. 

The degree of this is 24, and it is only in special cases that it can be 
solved in a manner similar to that which is applicable in the foregoing 
examples. ‘Thus the method breaks down; at the same time, a 

generalisation of the process, due to Galois, is of the highest importance 
in the whole of the theory. 

6. Galois begins by considering the rational equation satisfied by 
the most general linear function of the roots. Let uw, us, .-. Un be a set 

of absolutely undetermined symbols, subject merely to the ordinary 
algebraic laws of combination ; and for the sake of brevity let n! =. 
If we put 

Vy = Uj Uy + UgAg + vee + Un Un = Sao 
‘= 

where 2, %; .-. #, are the roots (all different) of f(a) = 0, we can obtai 

from v,, by interchanging the roots in all possible ways, » essentiall 

different expressions 2%, V2, --- Vn | 

The product 

Tl (v-w) =+b0%1+...+b.= Fv) 
é=1 
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coefficients which are integral and rational in ¢, cé,...¢, a8 well as in 
th, Us, ... Up, because /'(v) is a symmetrical function of the roots of f. 

The equation F'(v)=0 is called the complete Galoisian resolvent 
of f(#)=0. Its discriminant is a rational integral function of 
Ei, Ca, ++. Cn, Uh, Us,...Un, Which does not vanish identically: so 

that we may, if we please, assign numerical values to the parameters 
Uh, U2, ... Un Without making any two roots of the resolvent equal to 
vif ° . . 

each other. In particular, these numerical values may be ordinary real 
integers. 

7. ‘The most important property of #’is that any rational function 
of the roots of f can be expressed as a rational function of any one of 

the roots of F. 

Let the given rational function be $(2,, a, ..- @), and let 

¢i(= 9), po; dol Pu 

be the expressions obtained from ¢ by applying the substitutions which 
derive 2, V2, V3, ---V from v,. ‘These expressions ¢; are not necessarily 

all different in form ; and two which have different forms may have the 
same value. But it must be remembered that ¢; is derived from ¢, by 

the same permutation which changes %, to 1;. 
Consider the expression 

_f hh Ps Pu 
W(v) = jen teen oes 3 ty Fv); 

W(v) is an integral function of v, in general of degree (u—1), but 
possibly lower, and it is a symmetric function of 2, a,...%@,. Hence 

the coefficients of y(v) can be expressed as rational functions of 
,, Co, ++» Cn; and if, after doing this, we put v=, it follows from the 

above identity that 

W(v) = hf"), 

at W(%) 
or P= FC) lee Cry Ore An Cask Wii tsy 21 tn) 

ere # denotes arational function of the quantities in the bracket. 

his equality reduces to an absolute identity if on the right-hand side 
e replace ,, ¢,...C, by their expressions in terms of 2, @, ... @n, 

Gtiay <= tas. 
The discriminant of F'is 

A= I (,) EF (vs)0.- EF (e); 
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and the quotient A/#"(v,) is expressible as a rational integral functio: 
of v,: hence we may also put ¢ into the form 

fed ERCOE AMEE IED 2 
A 

where J(v,) is a rational integral function of 2. 

It should be observed also that ; can be expressed as the sani 

function of v; that ¢, is of %. 

Finally, ¢, is expressible as a rational function of any root of 
f(v). Thus if we choose %;, all we have to do is to replace, in | 

foregoing proof, 
Vi; Vo; eee Vu 

by 8; (), Sj (v2), vee Si (x); 

where s; is the perfectly definite substitution which converts , to 
In general, ¢ is not the same rational function of 2; as it is of %. 

8. Several important consequences unmediately follow from t 

theorem just proved. In the first place, we may put ¢=4%;, and th 
infer that 

All the roots of the Galoisian resolvent may be expressed as rationa 

Junctions of any one of them. 

An equation having this property is called a normal equation ; th 

Galoisian resolvent is accordingly a normal equation. It must b 
remembered that the same equation may be normal from one point ¢ 

view and not from another, if, in the definition, we understan 
“rational function” to mean ‘“‘rational function with ratione 
coefficients.” By a field of rationality we shall understand th 

ageregate of all the expressions obtainable from a finite set of symbo 
t, to, ... tm by a finite set of rational operations ; that 1 is to say, all t 
expressions which can be reduced to the form 

(ti tay «++ tm) 
W (4, to, acs tm)’ 

where ¢, w are finite polynomials with ordinary whole numbers fe 
their coefficients. The elements 4, t2, ... fm may be partly undetermine 
parameters, or wmbra, partly determinate numbers; those which are 
numerical may be irrational arithmetically, but are here considerec 

rational in the sense of being given or determined. ‘he simples 
field of rationality is that of ordinary rational numbers; this | 
contained in every other field. 

If tmy1 18 any algebraic number or symbol not contained in t 

field (¢,, to, ... tm), the field (4, t2, ... tm, tm+1) 18 said to be obtained from 
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the former field by the adjunction of t+: this term is specially 
employed when ¢,,4; 18 a numerical. quantity. 

In the case of the Galoisian resolvent we may say, then, that it 

is a normal equation in the field 
beng ae Oni thyitlas. ee Ua): 

-*  Q. If, in the theorem of Art. 7, we put $=, we arrive at the 

proposition that 
Every root of an equation without multiple roots can be expressed as 

a rational function of any one root of its Galoisian resolvent. 

If rational values are given to the parameters w%, 2, ... Uy, the 

resolvent equation becomes normal in the field (¢,, @, ... Cp). More- 

over if ¢, Co, ..- G, are given, not as symbols, but as actual numbers, 

the resolvent becomes a definite numerical equation. Unless this 

equation has multiple roots, it is still true that the knowledge of the 
value of any one root of the resolvent leads to the complete solution 

of f=0; because to calculate the function Y(v) of Art. 7 in its 
rational form it is sufficient to know the values of the elementary 
symmetric functions of 2, a, ... @,, and these are given by f. 

10. ‘The total resolvent F#'(v) may or may not be reducible without 

adjunction ; in the second case /(#) = 0 is said to be an equation with- 
out affection. 

The irreducible factors of the resolvent of an affected equation are 

all of the same degree. . 
Let ¥, (v), ¥2(v) be any two such factors: let », be any root of 

¥, (wv) =0, and v any root of ¥.(v)=0. Then (Art. 7) v, can be 
expressed as an integral function, J (%), of »,. If the T'schirnhausen 
transformation y = J (a) is applied to y, (w) =0, we obtain an equation 
x (y)=0 of the same degree as ¥,=0 which has a solution y=2 in 
common with ¥(y)=0: hence x(y) is divisible by y¥.(y), and the 
degree of ¥, cannot be less than that of ¥%. By a similar argument, 
the degree of y, cannot be less than that of y, ; therefore the degrees 
must be equal. 

If h is the degree of each irreducible factor, we have an identity 

E(w) = th (&) Yo (%) «++ Yn (&); 

with mh = p, 

so that m and / are conjugate factors of p. 
Every one of the equations ¥;(v)=0 is normal, and they are all 

T'schirnhausen transformations of any one of them. Each may be 
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called a primary resolvent of f(#)=0. The knowledge of any one 
root of a primary resolvent leads to the complete solution of f(a) =0. 

11. A simple example will help to illustrate the results so far 
obtained. Let the given equation be 

e—2’+xe-1=0, 

and let a, 6, c be used instead of a, we, Us. 

The complete resolvent is F'= dx, 

where 

p=(v—aP+(b—c), x=(v—-b + (e-a), p=(v-c) + (a—by. 

One root of 6=0 is a—bi+ci, and from this the roots 1, 7, —¢ of 

the original equation are obtained. If we put 

v, =a—bi+ ci, 

then siete), 
b—e 

give the roots of f=0 as rational functions of 2%. 

12. The reducibility of # shows the existence of asymmetrical 
functions of 2, a, ... @, which nevertheless have rational values. The 

coefficients of the terms of a primary resolvent ¥(v), considered as a 
polynomial in v, %, We, ... %m, are all rational ; but when expressed in 

terms of 2, , ... #, they cannot all be symmetrical, otherwise every 
permutation of the roots of f would leave w (v) unaltered, and this is 
not the case. 

13. Consider now a primary resolvent 

Wr (v) = (v— %) (YU —%) «.. (U— M%). 

Any one of its roots, say »;, can be derived from v, by a perfectly 
definite permutation of 2, 2, ... %,: let this be called s;. Including 

the identical substitution s,, we have in connection with y%, just h 

substitutions s,, s., ... s,. It is a most important theorem that these 

substitutions form a group; that is to say, for every pair of substitu- 

tions s,, s, (the same or different) we have sys,=s,, where s, is a 
definite substitution of the same set. 

It follows from Art. 7 that since v, and v, are both roots of 

F'(v) =0, there is an integral function J(v) such that 

Sp (v) = VU, = J (). 

Moreover it appears from the same article that 

J (q) = Sa'( Vs) = Sa 18> (V1)} 



f 
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But since the equations 

| (0) =0, w{J(@)} =9, 
have a common root », and the first is irreducible, while both are 

rational, each root of the first is a root of the second, and in 

particular 
Wy {J (Va)} = 9 ; 

that is to say, sq {s, (v,)} is a root of ¥, (v) =0, and is therefore equal in 
value to s, (v,), where s, is a substitution of the set s,, s.,... s,. But 

this equality in value must also be a coincidence in form, on account 
of the arbitrary nature of the parameters 2, #2, ... u,. Hence 

S—Sq = Se, 

it being understood that s,s, means the result of first applying s, and 
then applying s,. In a similar way sys,=sz; but sy is, in general, 

different from s,. 

14. If is any other of the primary resolvents, there will, in the 

same way, be a group of substitutions connected with it. This is, in 
fact, the same group as the one associated with y,. For suppose that 

Wo (v) =(v — Un 41) U—Un4a) «+ (V— Ven) : 
then 74, can be expressed in the form 

41 yf (v), 

and by the usual argument it follows that 

W, = {v—ZJ (v,)} {o— J ()} ... {o- J (a) }. 

_ The notation may be so arranged that 

J (Vi) = n+ Gas fy. 

and this being so, we conclude that 

n+i = 8 (Un +1)) 

because 4+; 18 derived from % by the change of v, into ;, and the 

only substitution which does this is s;. 

The group (s,, s:, .-. s,) 18 called the Galoisian group of the equation 
J (#)=0. If the complete resolvent is irreducible without adjunction, 
h=n! and the Galoisian group consists of all the permutations of 
BA ik. Wy « 

15. We will now select any one of the primary resolvents, denote 
it by ¥(v), and call it simply, for the present, the resolvent of (2). 
Assuming nothing about /(a) except that its coefficients are actually 
given, #’(v) and subsequently (v) can be found by rational operations. 

The degree of y(v) in v at once gives the order of the Galoisian group. 
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But we can go further than this, and determine, from an examination 
_ of wy, the elements s,, s,, ... s, which form the group. The notation may 

be so arranged that 

y= (v—%) (V—%) ... Y—%), 

Vy = UL, + Ugg + .0. + Un: 

Now the change of 2, into v, effected by the substitution s, may also be 
effected by a substitution o, operating on the parameters w, Wo, .-- Un- 

For instance, if 

Uy = UL, + Uy + Ugl3 + Ugly + Usls + Ups, 

Vg = UjLy + Ugly + Ugly + Ugly + Ups + Ups, 

then So = (HAs) (oles), To = (Uy Ualla) (Uslbytle) 

In general, if s; contains the cycle (a2 ... %), 7; contains the 

cycle (wuz ... Uy, and there is a one-one correspondence between the 

substitutions s; and the substitutions o;. Ifo; is applied to y (v) in its 
rational form, the result is a function x(v) of the same order, which 

has a root v;, and therefore coincides with y(v). ‘Thus there are at 
least h distinct permutations o, forming a group, which leave (0) 
formally unaltered. The same argument applies to the other primary 
resolvents obtained from F’, and since there are only Am substitutions 
a altogether, it follows that there are precisely / substitutions o which 
leave y formally unaltered ; from each of these we can deduce uniquely 

a substitution s belonging to the Galoisian group. 
For instance, in the example of Art. 11, if we take y% as the 

resolvent, | 
o) = lenny = tao): 

and the corresponding Galoisian group is 

Boe Ly ae Oa 

After obtaining the elements of the Galoisian group 

TNS Sa, \ tea: 

its properties, as a group of substitutions, or more generally as an 

abstract group, may be investigated. These are, in themselves, wholly 

independent of the values of 2, a2, ... Xp. 

16. It will now be supposed that the coefficients of / are 
numerical ; and, as explained in Art. 8, any quantity in the field 
(C1, Co) «++ Gn) Will be considered rational, no matter whether the coeffi- 

cients ¢; are arithmetically rational or not. It will now be proved that 
Every rational function of the roots of f which is unchanged in 

numerical value by the substitutions of the Galoisian group has 

ee 
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a value which can be expressed in a rational form: that is to say, it is 
equal in value to a certain rational function of the coefficients of f. 

Let the given function be ¢ (a, a2, ... @,) and let v,, V2, ... v% be the 

roots of the resolvent y(v). Then (Art 7) there is an integral function 
J (v) such that 

p=, =d (%) 

$2 = J (%), Ps =S (us), --- Gru=JS (rr); 

Where ¢., $3, ... ¢, are derived from ¢ by applying the Galoisian 
substitutions s,, s3, ... s,. Hence 

di t+ dot ... t+ G,=J (%) +d (%) + ...4+S(%) 
EO LC Og, Og tt Ug Ugsn ie UR), 

where S is a rational function, because %/(v;) is a symmetrical 
function of v,, %, ... 2, and the coefficients of w(v) are rational. If, 

now, $; means the value of ¢;, we have, by hypothesis, 

$i=Go= = Gr= 7 (Git Gat + by) 
hi =< 

SS Coe Calin Un tier Carre lig)» 
h 

where S means the value of the rational function 8. 

If the coefficients c; are represented symbolically, the function S, 

even in its lowest terms, may contain the parameters explicitly ; in this 

case the value of ¢ is expressible as the quotient of any numerical 
coefficient in the numerator of S by the corresponding coefficient in the 
denominator. The fact that we thus have alternative rational 

equivalents for ¢ implies one or more rational relations connecting the 
coefficients ¢;. If, on the other hand, the coefficients ¢; are actually 

given as numbers in a definite field (for instance, if they are all of the 
form a+ B,/2, with a, B rational numbers in the ordinary sense) the 

parameters, at the last stage of the process, disappear of themselves, 

and we obtain the value of ¢ as a definite number in the field. The 

point of the proof is then that the value in question is expressible as a 
‘quantity in that particular field. 

17. Conversely, every rational function of the roots which has 

a rational value keeps that value when any substitution of the 
Galoisian group is applied to it. 

Let ¢ be the rational function, and A its rational value. Express- 

ing ¢ as a rational integral function of v,, we have 

=JS (v,)=A, 
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and hence the rational equation 

J(v)—-A=0 

is satisfied by v,, and consequently by 0, Vo, --+ Un- 

Thus J(v)=A; 

that is to say, A =5, J (%) =s9, 

which proves the theorem. It must be remembered, of course, that 

sip may or may not be formally different from ¢. Moreover, in any 

actual case, if we reduce J (v,) to a degree lower than # by means of 

W (v,) = 0 we shall in the end obtain A explicitly, if the value of ¢ is 
actually rational: so the process of Art. 7, applied to a particular 
function ¢ and a particular equation /, decides whether the value of ¢ 

is rational or not. 
Finally, there are rational functions of the roots which have rational 

values, but change these values when substitutions other than those of G 

are applied to them. 

T'o show this, let 6 be an undetermined rational quantity ; then 

W (0) = (0—%,) (86—%)...(8-— m) = A, 

where A is rational in (0; ¢,, 2, -:-.Cy3 Un, Ua, --- Unjaecee 

substitution not contained in the Galoisian group, ty (#) =, (8), where 

Wy, is a primary resolvent distinct from ¥. Considered as an equation 
in 8, 

(8) -¥(@)=0 
cannot have more than (#-1) roots, even when the parameters have 
fixed numerical values (subject to the usual restriction A+0). Since 
there are (m-—1) conjugate resolvents into which ¥ can be transformed, 
we have to exclude at most (h—1)(m—1) values of 6. For any 

other rational value of 0, it is the substitutions of G, and these alone, 

which leave the value of w (@) unaffected. 
Every coefficient of ¥, considered as a polynomial in @, 2, 2%, .-. Un, 

is unaffected in value by the substitutions of G ; it not unfrequently 

happens that some one of these coefficients, or a simple linear 

combination of them, can be seen to have its value changed by all 
substitutions not belonging to G; in this case it may be taken instead 
of w(@). For an example, see Art. 29 below. 

As a result of the three theorems last proved we may define the 
Galoisian group of /f as the aggregate of those permutations of 

@, Vo, .-. X, Which leave unaltered in value every rational function of 

the roots which has a rational value. 
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18. If ¢ is any rational function of the roots of f it has been 
proved that ¢# can be expressed as an integral rational function of 2, 

and it has been observed that in virtue of ¥(v,)=0, this integral 

function can be reduced so that its degree does not exceed (h-1). An 
independent proof of this affords a little more information. If, with 
the usual notation, 

AY fig Pi p. Pn x (v) = \oo 5 car + aes + by) 

x (v) is an integral function of v which is also rational, because it is 
unaltered by any substitution of G. Consequently 

a Sa AO) 
dp py Wy’ (~) 5) 

a rational function of v,, which may also be reduced to the form 

ex (a) Y' (v2) Y (v5) --- W (%n) 
1 5S ’ 

_J(%) 
6 ’ 

where 64 is the discriminant of w, and 7 (7) is an integral function, which 

in virtue of ¥(v,)=0 may be supposed put into its reduced form, so 
that its degree is not greater than (A—1). If ¢ is an integral function 
of the roots, the coefficients of 7 will be integral in 

CC Cid he tyes ss the 

Similarly, ; =) (%)/6. (a Loe Bache) 

The quantity 6 is not zero, because it is a factor of A. 
The substitutions of G‘ give to ¢ the different forms ¢,, $2, --- dn: 

these, however, need not be all different in value. Those substitutions 

of the Galoisian group which leave ¢ unaltered in value form a 
subgroup, or factor, of G which may be called the invariant group 
of &. 

In fact, if s,, s, are any two such substitutions, 

Sap = Syp = , 

numerically : hence Sap —-$=0, 

and since the expression on the left hand is a rational function of the 
roots which has the rational value 0, we may, by Art. 17, apply the 
substitution s, to it, and conclude that 

Sp (Sah = ) a 0; 

that is, Sp(Sah) = sob = 

numerically. Hence s,s, leaves the value of ¢ unaltered, and the 
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substitutions in question form a group, because s,s, is identical with 
a substitution of G, and it has been shown that it leaves ¢ unaltered 

in value. | 
It must be carefully remembered that the invariant group of ¢ 

consists exclusively of substitutions which belong to G. There may 

be other substitutions which leave ¢ unaltered in value, or even in 

form, but if they are not in the Galoisian group they are not to 

be included. The fact is that we cannot infer for certain that if 
Sub-6%=0, then s,(s,6-6)=0, unless s, belongs to the Galoisian 

group (cf. Art. 17, end). 

Writing, as usual, s;¢ = ¢,;, the function ¢ is a root of the rational 

equation 

(p- >) (p— d2)-..(6— dn) = 0. 

But if the invariant group of ¢ is of order &>1, the roots of this 
equation are repeated each & times: hence if we put 2/4 =1, which is 
necessarily an integer, ¢ is a root of a rational equation 

d'+b,6° "+ ....+5,=0, 

19. Lf f(a) ts reducible without adjunction, its Galoisian group is 
intransitive, and conversely. , 

First suppose that G is intransitive: this means that a certain — 
number of roots 

Wy Ua, +++ Uy (7 <n) 

are only interchanged among themselves by the substitutions of G. 
Consequently (Art. 16) 

(@ — a) (@— &)...(@ — 2) 

being unaltered by any substitution of G has rational coefficients, and 
J (x) 1s reducible without adjunction. 

Conversely, suppose that f(a) has a rational factor 

Fi(a@) = (@- &%) (@ — &)...(@ - Ly) (7 <n) 

then, if G is transitive, it must contain a substitution s, which converts 

some one of the roots a, a@,...@,, Say 2, into a root x,4,, formally 

different from 2, @,...#,. Hence sf, contains the factor (#—- a): 
but since f, is rational sf,=/,, and consequently 

0=/, (r41) = (Gr41— Hs) (par — Ba) --- (Brrr — Br)3 

implying that f(z) = 0 has equal roots, contrary to hypothesis. Hence 
if f(a) is reducible, G is intransitive. ‘The example of Art. 11 gives a 
simple illustration. 

It is possible to resolve f(a) into its irreducible factors by means of — 
rational operations, even when the coefficients are connected by known 
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algebraic relations. Unless the contrary is expressed, it will be assumed 
henceforth that / is irreducible without adjunction. 

20. Suppose that by the adjunction of a quantity 6 the resolvent 

Ww becomes reducible in the field (0 : c, Co,... Cn 2 U1, U2,--- Un). If we 

have 
Y=Wvs 

it follows by comparing coefficients that @ satisfies one or more rational 
equations in the original field. ‘These must be consistent with each 
other, so that @ must satisfy a definite irreducible equation 

a(0)=0+4,07+...+m=0 

with rational coefficients, which we may suppose integral because, if 
necessary, 9 may be replaced by 26, where z is any rational quantity. 

If, by any means, this irreducible equation has been found, it is 
possible to actually resolve ¥ into its irreducible factors in the new 
field ; and this resolution is unique. We shall have 

W = X1X2 ++ Xi 

and », will be a root of one of the irreducible equations x;=0. 
Arranging the notation so that x,(v,) = 0, and for convenience putting 
X1 = x, we have an equation 

x(v) = 0, 
which, in the new field, will serve as a primary resolvent of /=0. 

This is clear, because x(v) is only a transformation of a product 

(v — %) (V— %)--. (VU = %) 

so that (Art. 7) x(v)=0 is a normal equation; and every rational 
function of 2, %,...%», can be expressed, in the new field, as an 

integral function of v,, the degree of which is less than that of y, and 

which is not of higher degree than (/—1) in 6. As in Art. 10 it can be 
proved that the functions x, x, -.. x; are all of the same degree in 2, 
and are 'I'schirnhausen transformations of each other. 

In expressing any rational function of 2,,...v, as a reduced function 

of v, in the new field, we may proceed as follows. In the original field 
let ¢=7(v,) be the reduced expression for ¢ (Art. 18); divide j(v) by 
x (v) until the remainder is of degree lower than that of y. We thus 
obtain an identity 

F(v) = Q()x(@) + FQ), 
and by putting v=, we have 

d =j(%) on k(~), 
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because x(v,)=0. The coefficients of 4, which are integral functions 
of 6, may be reduced to their lowest degree by dividing them by @(@). 

It will be noticed that x(v) must contain @ explicitly, because it is a 
factor of w(w), which is irreducible in the old field. 

21. We are now approaching the culminating point of Galois’s | 
theory. Unless G is a simple group, it will contain self-conjugate 
factors distinct from the identical substitution: and among these there. 
will be a certain number of maximum self-conjugate factors. Let IT be 
a maximum self-conjugate factor of G, of order / and of index /( = h/k) 
with respect to G. The notation may be so arranged that 

Dea Ge <Ba,e ose): 

Let z be an undetermined rational number, and 

6 = p(ay, Xo, --- Hn) = (2 — VW) (2 — W%)..«(Z — U%), 

where 0, U2, --. 0% are the roots of the resolvent y = 0, which correspond 

to the substitutions of T. Then the value of 6 is unaltered by any 
substitution of TI, and by choosing z properly (Art. 17) we can make 
sure that the value of 6 is altered by every substitution of G which is 

not contained in I’. 

Consequently @ is a function of which I is the invariant group, and 
is a root of a rational equation 

a(0) = 6 +4,614 a6? +...4+4=0. 

So long as 2, %, Ms, ++.U%, remain undetermined, the coefficients in 

this equation are integral in the field (2; 21, #2,... dn} C1, C2)++-€n): It 

is possible to give fixed rational integral values to Z, 2%, U2, .+-Un SO as 

to make the coefficients rational in (¢,, C2, ..- Gn). 

22. It is important to determine the Galoisian group of the 
equation satisfied by 6 ‘To do this, it 1s necessary to use a lemma, 
derived from the elements of the theory of groups. All the substitu- 
tions of G may be arranged in the form 

Sis Sas ese 
t281, toSq, ++ CeSz 

L181, bySo, ++ Uy Sz 

where ¢2, ¢;, .-. t are distinct elements suitably chosen from G. 

If any substitution s of G be applied by premultiplication to the 

elements of a row in this scheme it will produce a new row which con- 
sists either of the elements of the same row, usually in a different order, | 
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or else the elements of another row, usually in a different order. 

In no case can elements of the same row be changed into elements of 
two different rows. 

T'o prove this, suppose, if possible, that, for instance, 

StS =baSp, Sta. = by Sq 

where a, b are different. ‘Then, since s,, s,,...s, form a group, 

Slo = baSpS1 '=baSi, Ste = tySqSn ' = tS; : 

therefore ESE tp Si te — 158; pa = beer 

which is impossible, because ¢,s, 1s in the bth row, and (on account of 

the way in which ¢,, ¢,,...¢, are chosen) is distinct from ¢,, which is in 
the ath row. 

Hence we may say that the application of any substitution of G 
produces a permutation of the rows of the table. These permutations 
form a group, denoted by G/T, and called the complementary group (or 
factor-group) of G with respect to I. The only substitutions of G 

which leave the first row in its place are the elements of I, and these 
leave every other row in its place, because 

Sib; Sx = bj 81 Sr, 7 LjSm 

for all values of 7, 7, 4, since T is self-conjugate. 

Moreover any substitution which converts the first row into the 7th 
must be of the form ¢;s,. Applying this to any element ¢,s, of the jth 
row, we obtain 

biSa » Lj Sp. 

Now because I is self-conjugate, we may put 

‘ Salty = US, 

and hence tp SqbjSp = bjb;SoSp = bi tjSe . 

Finally ¢,;t;=%,sa, where ¢, is a definite substitution determined by 

t;, t; alone: hence 
t; tj8,. = tuSaSe = U,S¢ 

and the substitution ¢,s, converts the jth row into the éth. Conversely, 

the only substitutions which change the jth row into the /th are those 
which change the first row into the 7th. Consequently G/T’, considered 
as a group of permutations of rows, may be represented in the form 

(m1; Ta +++) 

where 7; is the definite substitution of G/T which changes the first row 

into the ith. 

M, 2 
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~The substitutions ¢,, f:, ... 4 do not, as arule, form a group: but they 

behave like a group when considered as operations on the rows of the 

table. 

23. It will now be shown that the Galoisian group of the equation 
a (9) =0 is holoedrically isomorphic with G/T. The values of @ are all 
different, and we may denote them in such a way that 

1=15,2etet 
6; = £,0, =t,8,0,. Gs. 2, ay 

This being so, every permutation of rows in G/T corresponds to a 

permutation of (6,, 9, ... 6), and every substitution of G produces on 
(0,, 4, ... 9) the same permutation as it does in the rows. Now let 
Q (6, ries ... 9.) be any rational function of the roots of a = 0 which 

has a rational value. Then 

Q (A, O, --- 1) = R(x, Xa, ... Xn) 

where # is another rational function. Since the value of # is rational, 

it is unchanged numerically by any substitution of G. ‘This substitu- 
tion applied to Q produces a permutation of 6,, 4, ... 0, corresponding 
to an element of G/I. If, then, H is the group of permutations of 
6,, 6., ... 8, which is holoedrically isomorphic with G/T, considered as a 
permutation of rows, every substitution of H must leave @(6,, 4, ... ) 

unaltered in value. Conversely, if Q is unaltered in value by every 
substitution of H it must be rational, because in this case every 
substitution of G leaves it unaltered in value. Therefore (Art. 17) 
H is the Galoisian group of a (6) =0; and we may put H= G/T, in the 
sense that these two groups are holoedrically isomorphic. 

Since G/T is transitive, H is so too, and hence the equation in 6 is 
irreducible (Art. 19). Moreover, we can prove, as in Art 18, that it is 
a normal equation, by taking the function 

py de d eee Map Paani oe 

where ¢ is any rational function of @,; 42, ... 9, and ¢,, de, ... ¢, are the 

functions derived from it by applying the substitutions of G/T. 

24. Consider, now, the effect of adjoining @, to the field of 
rationality : this means that every function FR (6,; ¢,, C2, .-. C,) which is 

rational in form is to be considered rational in value. ‘The group T is 
the largest group in G which leaves the values of all such functions 

unaffected, and it is, in fact, the Galoisian group of f(a) in the new 

ne ee 
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field. ‘To prove this it has to be shown that every rational function 
R (a, Xe, ... Zn) which has a rational value A in the new field is 
expressible as an explicit rational function of 6,. 

To prove this, take the function 

(a, V2, soe Pn) 

6 ee 6; ; 

6 being arbitrary, and apply to it all the substitutions of G. Then the 
function 

la bs Jae R G6, Gag, + + Ga a} 0-8) (0-4,).-.- A) 

can be expressed in a rational form 
U 

S (0: Cy, Coy ++ Cn) 

(Arts. 7, 17). Now if 

a (8) = (8 —8,) (06) ... (0-6) 
so that w(@)=0 is the irreducible rational equation satisfied by 6, in 
the old field, we have 

(9 — 61) (@— 8) ... O— O) = {a(A)}* 
where £=h//. Moreover, among the denominators 

(8 — 0,), (0-4), ... (0 — 4,) 

only 7 are distinct, namely, 

(9 —0,), (0—6,), ... (6-6). 

Hence it follows that 

Keli, Tig R, an 
eg, 9-0, 96) 8 =P) 

where 7'(@) is rational integral function of 6. If the value of RF is 
unaltered by each substitution of T, all the fractions with the de- 

nominator 6— 6, must have the same value # in the numerator, and 

we may write, as an arithmetical equality, 

kR LI, Ves Ly 

BO Gan OTE T ES TREE ae 
true for all values of 6. The quantities Z., L,, ... LZ, are all rational 

functions of 2, 2%, ...%,. By putting 0=96,, we obtain 

and this may, if we please, be replaced by an equivalent integral 
function of degree not exceeding (/- 1). 

2—2 
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The theorem proved amounts to this :— 
If 6 is a rational function of the roots of f(a)=0, which has 

Jor its invariant group a self-conjugate factor, 1, of G, the effect of 

adjoining @ to the field of rationality is to reduce the Galoisian 
group of f(x)=0 from G to T. 

25. In the new field we can construct a new total resolvent for 

J (a). In fact, if (v—v,) 1s any factor of the old resolvent y (v), and if 
the substitutions of TI give v, the values 7, v,... % then the new 

total resolvent is : 
F,,(v) = (v— %) (v= %%) ... (U— U%) 

=U + pur +... + py 

where the coefficients are rational in the new field. In one, at least, of 

these coefficients 6, must occur explicitly, because W(v) is irreducible in 
the original field. Moreover 

U (0) = F,(v) F, (0). Fi(v) 
where F’, (v) is obtained from F’; (v) by changing @, to @;, then expressing 

6, and its powers in terms of @,, and finally reducing the coefficients by 
means of a(@,) =0. ; 

If F, (v) is reducible in the new field, all its irreducible factors must 
be of the same degree (cf. Art. 10), and any one of these may be taken 

as a new primary resolvent. Every root of / may be expressed as a 

rational function of 0, 0, C1, Coy «++ Cay Ury U2, +++ Un, Where 2 1s any root 

of the new primary resolvent. 

26. The equation a(6)=0 satisfied by the adjoined irrationality 
6, is usually called a Galoisian resolvent of f(@)=0: but we shall 

find it convenient to call it a Galoisian auxiliary equation, or simply 
an auxiliary equation when there is no risk of mistake. On the other 
hand the equation /,(v)=0, obtained in the last article, may be 
properly called a resolvent. 

If we form the auxiliary equation according to the general method 
of Art. 21, its coefficients will contain the parameters 7%, Us, --- %, IN a 

complicated manner. In any practical case we at once simplify the 
auxillary equation as far as we can by giving definite values to the 
parameters, thus making @, a definite numerical irrationality to be 
adjoined to the field. It may or may not be convenient to give 
definite numerical values to the parameters as they occur in /,(v) : for 
some purposes, even in a practical case, it may be convenient to leave 
them umbral. ‘This is one of the main reasons for distinguishing 
between an auxiliary and a resolvent equation : in other respects they 
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are similar, for example they are both normal. The real service 
rendered by an auxiliary equation is to define a new field of rationality 

in which the Galoisian group of f(#)=0 is of lower order than it was 
originally, while at the same time the Galoisian group of the auxiliary 
equation in the original field is of lower order than that of f(a) =0. 

Unless this last condition is satisfied, we do not gain anything by the 
construction of an equation a(6)=0, even though the adjunction of 
one of its roots lowers the order of the Galoisian group of /; because 
in this case the Galoisian group of a(6@)=0 is, in its abstract form, 
just the same as that of /(#)=0, and we are confronted with the 
original problem in another shape. 

If, however, as we have supposed, @ is a rational function of the 
roots of f which has for its invariant group a proper self-conjugate 
factor of G (that is, one which is not merely the identical substitution), 

the problem is really simplified by being made to depend upon two 
equations 

: a (9) =0, 
Wy (2, 6,) =(), 

where the first is of order /, a proper factor of 4, and has a Galoisian 

group of order /in the old field ; while the second is rational in the 
field obtained by the adjunction of 6,, any root of the first, and has a 

Galoisian group in the new field the order of which is either 4/l, 
or a factor thereof, and is equal in any case to the degree of y, in y, if 
We suppose, as we may do, that y, is irreducible in the new field. 

27. As soon as the original Galoisian group of f/ has been 

determined, we can construct what is called a composition-series for G 
in the form : 

} G, Gi, Go, Be: Gp; 1,. 

where G; is a maximum self-conjugate factor of G, G, a maximum 
self-conjugate factor of G4, and so on. Using the conventions 
G,=G, Gp+i=1, we have a set of indices 

CaO A On Ont, 

Ach that ¢; is the index of G; with respect to G;_,. The group G, 

‘is simple and its order is é) 4... 
| We have seen that if we construct a quantity a, which is a rational 
‘function of a, @, ... @, and which has G for its invariant group, 

a will satisfy an equation 

| a(a) =a%+ qi + ...+a,=0 

which is rational and irreducible and normal in the field (¢, @, ... ¢,). 
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By the adjunction of any one of its roots, we obtain a new field of 
rationality, which we may denote by (a, c), and in this field the group 
of f is G, 

We can now construct a function for which G, is the invariant 

group in the new field. Let t,, te, ... tm (where m=h/e,e.) be the 

elements of G., and let 6 be an undetermined rational quantity of the 
new field. We may arrange our notation so that 

V1, Vo; eee Um 

are the expressions obtained from », by applying the subsiitniene of 
G,; and then, if we a 

= (0—%,) (8—%)...(8—Um), 

B is invariant for 4 in the field (a, c). By choosing @ properly, as 

a rational function of a, it will be possible to secure that no other 

substitution of G, leaves @ numerically unaltered (cf. Art. 17). 
Employing a notation which is now usual, we may write 

Gi = 8 Ga + SGy + ... + S,Ge, 

as an equivalent for a tabular arrangement such as that of Art. 22. 
Hence we see that the effect of applying all the substitutions of G, to 

B is to produce me, expressions which have only e, different values, 

each repeated m times. ‘They are the roots of an equation rational 

in the new field, and of degree me,: but since all its roots are of 

multiplicity m, it is of the form {b (8)}” = 0, where b (8) is also rational, 

and of degree é. 
Consequently @ is a root of an auxiliary equation 

b (8) = 62+ b,B%-?+...+b5,=0 

with coefficients which are rational in the new field. 

This equation is normal, because G,/G, 1s a simple and simply — 

transitive group; hence by the adjunction of any one of its roots, 
all the others become rational, and the Galoisian group of / becomes 
G. in the new field (a, B, c). 

Moreover we have 

F,(v) = (©—%) (v= %)...(V= Um) = O™ + QU" 71 + + Om 8 

a total resolvent for f# in the field (a, 8, c) with coefficients which are 

rational in that field. This process may be continued until the | 

Galoisian group of f is reduced to G,; and finally, by forming an 
auxiliary equation of degree ¢,+4,, G is reduced to unity, and each root 

of f is expressible as a rational function of the field (a, B, ... A, c), 

where a,,8, ... A are roots of the (+1) auxiliary equations. If 

| 
4 
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desirable, this rational function may be transformed so as to be 
integral in the adjoined irrationalities. 

The ith auxiliary equation is of the form 

CoP ies bry, = 0, 

with coefficients rational in ¢, ¢, ... ¢, and the selected roots of the 

preceding auxiliary equations. 

28. It will be well to illustrate these very important results by a 
special example. Let the given equation be 

J(@) =e +a t+at+a+a?t+vt+1=0. 

Then if 7 is any one of its roots, 77=1, and the other roots are 
r’, 7, 7, 7°. Thus we have a very simple case of a normal equation. 
It may be proved that f(x) is irreducible without adjunction: this 
will, indeed, appear incidentally from what follows. 

If we put 
0, =ar + br? + er? + drt + er? + fr", 

0, = ar + br*+cr6+dr-+ er + fr’, 

v,=ar + br + er? + dr+er+fr, 

0, = ar + br + er + dr? + er + fr’, 

V5 = ar? + br® + er + dr’ + ert + fr’, 

V_ = ar + br? + c7* + dr? + er? +fr, 

then ; is derived from v, by changing 7 to 7, and 7, v2, ... vs are the 

roots of a primary resolvent y(v)=0. Expressing the operation of 
changing v, into 7; as a permutation of the roots of f we have 

$=1, S. = (124) (865), s;=(132645) 

5, = (142) (356), s; = (154623), Ss = (16) (25) (34). 

These are the elements of the Galoisian group of 4, and combine 

according to the multiplication table 

< Sy Seg Se Sg Se 

Sy S,- So 1 33 58 

SS BaeiSae Sel: © Se 

S4 US ae Ae eS 

S; See begs 8470 Sa 

Se Se i Silat Oe Gg. ok 
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which is to be read s,?=s,, S283; =s,, etc. It appears from the table 

that s,s, = 8S, so that Gis Abelian, and every one of its factors is 

self-conjugate. As a matter of fact, if we put s,=s, the elements of 

G are 
ISS as ese 

and the group is cyclical. It is also transitive, so that f(a) is 
irreducible without adjunction. 

One factor of G is(1, s, s,), and from this we can derive an 
auxiliary quadratic. ‘To find a function of which (1, s2, s,) is the 
invariant group, we start with 

(€+,) (6+) (€+%) ; 

in this expression the coefficient of ¢’a is 

renter, 

and this is, in fact, a function such as we require, because (ss, ss, S¢) 

each convert it into 
r+ +7, 

which has a different value because / is irreducible. If, now, we put 

W=rKtPrnr, Y=r+rvr+er, 

then y, + 4¥,.=—1, and y,y,=2, im virtue of f(7)=0. Consequently 
y, 18 a root of the auxiliary equation 

Let us take "= 

and adjoin it to the field of rationality, which thus becomes (y,). The 
Galoisian group of / reduces to (1, s:, s,), of which the only self- 
conjugate factor is unity. Hence + must be the root of an auxiliary 

cubic, and since 7 is changed by s:, s, into 7°, 7* respectively, this 
auxiliary cubic is 

=r) 2-1) @=r) 30; 
or, on multiplying out, and expressing the coefficients in the new field, 
this 1s 

A—y2e—(y,+1)2-1=0......1.0seee (2). 

If z, 1s any root of this equation, the others are z,°, 2‘; finally the 
roots of the original equation may be expressed in the form 

r= 2, arg= 2, = We es (4 ze 1) Pie get 

m=ei=-2Z2-aA +H, m=2P=—-(1+y)27-4-1, 

re= eo =2"—-y%—(1+y,). 

If we solve (2) by the method of Art. 4, we find that 

(2, + ow? + wz,*)? 
— 
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is a root of the quadratic 
t? + (2y, —13)t -—7(2y, +1) =0, 

one root of which may be put into the form 

Oy, F13B+3/21 1443,/21—1./7 
2 iS 2 

Let a definite cube root of this be extracted, and called 6; then 

since 

i 

(% + w%? + wz,") (4 + wz? + om") = 2y,+ 1 =7,/7, 
we may write 

—14+%,/7 
ra] oe eae = pe — ee ; 2 + WZ, ae wz,4 = 0, 

& + wz? + w2,4 = 1,/7/8 ; 
whence, by addition, 

2 

re pee 

The quantity 6 is of the form a+, with a, B real; and the 
question might be asked, whether a and B admit of representation by 

means of real radicals. This is not the case, because a is the root of a 

cubic with all its roots real, so that the formula expressing it again 

involves cube roots of complex quantities*. 
By the adjunction of y, the resolvent ¥(v) can be expressed as the 

product of two rational factors ; one of these is 

Fw) = (v—%) (0 - %) (Y—%) =v? — Po? + Qu- R, 

P=(a+b+d)y-(ct+e+f) (1+), 

Q=-(@+P4+a@)L+y)t (C+ Ft fn 
+ (ac + bf + de) (2-4) + (ae + be + df) (3 +%) 
—(bd+da+ab+ef+fet+ce+af+t be+cd), 

R=0+H+F+P+e8+f? 

+(@b+ec+@e+be+b'd+bf+ d+ ce 
+@a+@e+0f+eb+ef+fratfe) y, 

—(@d+0f+Ba+Bet+Cat+cb+ef+ab+de 
+@a+@c+@d+f7b+f7d + fre) (1+) 

+ (abd + aef + bce + cdf) (2-4) 
+ (abf + acd + bde + cef) (8+ y;) 
— (abc + abe + ace + acf + ade + adf 

+ bed + bef + bdf + bef + cde + def). 

* Holder, Mathematische Annalen, xxxvu1, 307. 

where 
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The other rational factor may be obtained from this by changing y 
into — (1+ 4). 

This example affords a verification of the theory of Art. 15. The 
permutations of the parameters which leave y(v) formally unaltered 
are 

Oval, o, = (dba) (efc), a; = (edfbea), 

o,= (bda) (fec), os=(chfdea),. . S¢=(fa ieee 

and these could have been found by experiment from (wv), without 
assuming any special relations among the roots of f(x). We should 

then infer the Galoisian group of f(a) from the permutations o;, and 
hence finally discover the relations connecting the roots. ‘The per- 

mutations o which leave F\(v) unaltered are 1, o2, o4, as may easily be 

verified ; while o3, o;, o; each convert /\(v) into the other rational 

factor of y (v). 
Instead of starting with the factor (1, s., s,) we might start with 

the factor (1, s,). This leads to the auxiliary equations 
y+ y= 2y—-1=0 v0 wae » di tigip 6a (3), 

Pye 1 =O sae. ‘eae (4), 
where we may suppose 

Bate Vain e 

With the notation of Art. 4 we find that A = B= 7, 

go. Ut 219 
4 > 

a Se 
Bypes = 1 Oe TIO en pee Se 

and the reduced forms for the roots are 

M=4, M=R="7HA—-1, 4=4'= (yy or 1) NY, 

y=eat=—-(y2-1a-y?t+1=-W’?-1)@+), 

r= ay Po Wa hyy m1, teen ae ee 

~_ 

29. In general, a composition-series for G may be constructed in 

more ways than one; but in every case the indices &, @, .-. @p41 are the 

same in number and value, and only differ in the order in which they 

occur*; moreover, the factor-groups G/G,, are the same, except for 

the order in which they occur, and all of them are simple. ‘Thus the 
number and the degrees of the auxiliary equations are the same in 
every case, and however they are formed, the problem of solving them 

has just the same degree of difficulty. 'This shows very clearly how 
deeply the theory of Galois penetrates into the special nature of any 
given equation. 

* Burnside, Theory of Groups, pp. 118-123. 



28-30] GROUPS AND RESOLVENTS 27 

A few words may be said as to the effect of adjoining a rational 
function of the roots, which has for its invariant group I, a factor of G 
which is not self-conjugate. If the order of lis k£, and we put A/k = 1, 

it can be proved, as in Art. 24, that the adjoined function ¢ satisfies a 
rational equation of degree 7, that its Galoisian group is simply 
isomorphic with the permutations of (I, #,V,...¢I) arising from pre- 
multiplication by substitutions of G‘, and that the adjunction of ¢ 
reduces the Galoisian group of f from G to Tr. If we adjoin all the 
roots of the equation satisfied by ¢, the group of / sinks to that 
factor of G which leaves each element of (I, ¢,V,...¢1) unaltered. 
This factor is the group consisting of all the substitutions common to I 
and its conjugate groups ¢,P¢;-!; a group which is self-conjugate in I. 

Consequently, the adjunction of all the roots of the auxiliary equation 

a()=0 is equivalent to the adjunction of any rational function for 
which the self-conjugate group last referred to is the invariant group ; 
hence it is unnecessary to adjoin any irrationalities except those of 

which the invariant groups are self-conjugate in G. 

To avoid misunderstanding, it may be remarked that a group G; 
of the composition-series is not necessarily self-conjugate in G'; but 
before constructing the 7th auxiliary equation, we have reduced the 
Galoisian group of f from G to G4, and in this group G 1s self- 
conjugate. The advantage of choosing Gas a maximum self-conjugate 
factor of G';_, is that in this case G‘;_,/G; is a simple and simply tran- 

sitive group*; hence the 7th auxiliary equation is normal, and, subject 
to this condition, of the lowest possible degree. 

From what has been said it follows that the natural classification of 
equations is according to the properties of their Galoisian groups. 
Equations of quite different degrees are solvable by processes of just 
the same complexity, provided that their Galoisian groups, in their 
abstract form, are identical. 

30. ‘There is an important theorem which, to a certain extent, 
forms the converse of that stated in Art. 24, and more generally in 
Art. 29. It is as follows :— 

Suppose that $(y)=0 is any rational equation such that the 
adjunction of one of its roots makes a primary resolvent w(v) re- 

ducible: then this same reduction may be effected by means of one of 
the Galoisian auviliary equations constructed after the manner which 
has been explained. 

* Burnside, pp. 29, 38-40, and Art. 22 above. 
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We may suppose that ¢(y)=0 is irreducible. By hypothesis, w (0) 
becomes reducible in the field (y,): let the new irreducible factor which 
has the root v, be x (v, %), a function which must contain y, explicitly. 

With a proper arrangement of the notation, we have identically 

x (%, 41) = (U— %) (© — 2) ... (UV — U). 

The substitutions ce So, «-. &;) Of G which are associated in the usual 

way with v,, Vo, ... V%, must form a gr ke IT. To see this, we observe 
that by Art. 7 we may write 

X= {0-1} {VU —Jo(U%)} «++ {0 —Ju (MIs 

where jo, .-..j, denote rational functions. Hence the equation 

X {Ja (v)} = 
has a root v, in common with x (v) = 0, and consequently 

X Ja (w%)} =0 

for b=1, 2,...4. But since s, and s, belong to the Galoisian group, we 

can infer from 
Sa (v%) = Va = Ja(%) 

that Sp (Sa) =Ja (%): 

hence Xx {Sp (Sa %1)} = 0 

and s,s, must be one of the set s,, S., ... 8%. 

Now let w (a, 2, ... %,) be a rational function of the roots of f for 

which I is the invariant group ; this will satisfy a rational irreducible 

equation 
a(w)=0 

of degree h/k. We shall have a resolution 

W(v) = (%, w) Wo (v, U) ... (0, Uw) 

with /=h/k; and we may suppose that ¥, (2, w) =0. 
Whatever value the rational quantity ¢ may have, the function 

(¢ — %) (¢ — Yq)... (t — U%) 

is invariable for the substitutions of I: hence it may be expressed 
(Art. 24) as an integral function of w and ¢, say J(¢, u). But the 
function is also x (¢, y): so that the rational equation in w 

bw)=IE w)-xtm)=0 
has a root w=, in common with a(w)=0. By giving ¢ a suitable 
value we can make w, the only common root. The process of finding 
the highest common factor of a (w) and b (wz) leads to an identity 

Pa+ Qb= Ru-S, 
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where #, S are integral functions of y,; and since a, 6 have a linear 
factor in common, we must have 

Ru,- S=0, 

=) Ty 

a rational function of y, which may be reduced to an integral form 

a, = O(%) 

by means of (4m) = 0. 

Hence Wr (v, th) = 1 {v, 8 (y)}, 

a rational factor of w(v) which vanishes for v= %,, and must therefore 
coincide with x (v, y,) because x is irreducible, and the degrees of both 

factors are the same. This proves that any new irreducible factor of 
obtained by the adjunction of y, can also be obtained by the adjunction 
of a quantity w, which can be expressed as a rational function of the 
roots of f. 

Rational functions of the roots of f have been called by Kronecker 
natural irrationalities (in the case when their values are not rational, of 
course): thus we may express the theorem by saying that every possible 
resolution of the Galoisian resolvent of an equation by means of algebraic 

operations can be effected by the adjunction of natural crrationalities. 

The roots of a chain of normal Galoisian auxiliary equations are 

natural irrationalities: in a certain sense they form a ‘“‘simplest” set 

of irrationalities in terms of which all the roots of the given equation 
can be rationally expressed. 



CHAPTER IL. 

CYCLICAL EQUATIONS. 

31. Tue only irreducible equations which have unity for their 

Galoisian group are linear, and require no discussion. The next 
simplest irreducible equation is one of which the Galoisian group is 

cyclical, so that 
GI Ses eo rele 

with sree 
This is called a cyclical equation The necessary and sufficient 

condition that a rational function of its roots should have a rational 

value is that its value remains unaltered when the substitution s is 

applied to it. 
The group G must be transitive, since / is supposed to be irreducible : 

hence s must consist of 4 single cycle which, with a suitable notation for 

the roots, may be written in the forms 

$= (Oyilys he) =e tee 

If p is any prime factor of n, and » = mp, the group 

Gye 1 Ps eee 

is self-conjugate in G', and we can form an auxiliary equation 

a (a)=0, 

of degree p, which reduces the group of f to G4. 
If ¢ is any prime factor of m, and m= lq, the group 

Ga= 1,094 ses, See 

is self-conjugate in G,, and we can form another auxiliary equation 

b(B)=0 
of degree g, with coefficients rational in the field (a), which ss the 
group of f to G,: and so on. 

It thus appears that if 
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where p, g, ... 2 are different primes, the complete solution of f=0 can 
be obtained from (h+4+...+#) auxiliary equations: 4 of these are of 

degree p, & of degree q, ... ¢ of degree z. 
Each of the auxiliary equations is cyclical. For example, the group 

of b(8) is G,/G,, and this is cyclical, because if we break up G;, into 
parts (or rows) with respect to G, we have 

Gy = G+ 2G = sPG, + 00 + st-0PG,, 

and hence ~ s”G,=s'?G.+ s@t)?G, +... + s@-H9PG, 

a cyclical permutation of the parts. In other words, the group of 6 is 
of the form (1, o, o°, ... o%") with o4=1, and so for any other auxiliary. 

32. Thus the solution of any cyclical equation may be made to 

depend upon the solution of auxiliary cyclical equations of prime 
degrees. In the first place, however, we shall explain a process of 

solution which is applicable to the original equation as well as to its 
auxiliaries. ‘This solution expresses the roots of / rationally in terms 

of its coefficients, a primitive zth root of unity ¢, and the nth root of a 
quantity which is rational when « is adjoined to the original field. 

Let 6,=a, + at... +e" ay: 

then 60 ty ett at +e ay + en, = 60}: 

and similarly 80,=.€ 0; : 

hence s*(9,") = «-6," = 0,", 

and 6,” must be a rational quantity in the new field, because its value 
is unaffected by any substitution of G’, and the group of / in the new 
field must be either itself, or a factor thereof. Consequently we may 
put 

eed ts 

where %/# denotes some one definite mth root of the rational quantity R, 
for instance the real root, if it exist. may, and in general will, 
explicitly contain the auxiliary quantity «. 

Now consider the expression obtained from @, by changing « to &, 
where / is any positive integer. Calling it 6,, we have 

Oy, = 2, + ay +... + —Dhy, 

sO, = e~*6;,, 

. 6, fe <0; k 6, 
and hence s (Gi) = "6, = 6 
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Assuming that the value of 6, 1s not zero, it follows that 

6, = B,6," (k=2502 ee 

where B, is a rational quantity in the new field. 

Finally YS hath eo 40, F054 oe Oe 

eS ory Cy oF 6, ay B,6/ oF B06, <feleatats -}- Bee 

By changing 6, into e~*@, we obtain a similar expression for a;41. 
As an illustration, take the example of Art. 28. In the first mode 

of solution, after the adjunction of y,, 

6° = As eal NT 549 (6 eae 

oa = Yy + 6, = PLY om by) 6,2, 

Bzq = yf, + wD, + 3+ 6Y; =e — 4y,) 0 6,2, 

323 = y, + w8, + eam 2 + 2y)o 6°. 

In the second mode of solution 

gs — 1+ 21/3 I Fo aah een Si! 9 = 7(3w +2), 

and the roots of the first auxiliary equation are given by 

3y,=—1 +6,- ! 9 G8 

3Y, =—1+ 076, + genee Gi 

3ys =— 1+ 06, - Sees 0’. 

33. ‘The method above explained breaks down when @, = 0 for each 
primitive root «.. T'o avoid this difficulty, Weber* has put the expression 
for 2, into a slightly different form as follows. 

We have identically 
Nd, + ¢, = 30; (=1, 2s 

NX, + C, = De~™ O,, 

and hence 0 (@p,— %) = % (e-™ —1) 4. 

Now let h=n/p, where p is any prime factor of n; the coefficient 
(e«-"”—1) vanishes whenever 7 is a multiple of p, while on the other 

* Algebra, 1, 589. 
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hand (a,—2,) is not zero, because / is irreducible. Consequently there 
must be one integer 7 at least such that 6; does not vanish, and 7 is 
prime to p. | 

If, therefore N=p ger’... 

where p, 7,7... are different primes, we can find integers X, p, v... 

prime to p, qg, 7... respectively, such that 6, 6,, 9, etc. are all 

different from zero. 

Taking any positive integers ¢, 2, y, 2, ... and denoting, as before, 

the generating substitution of G by s, we have 

§ Nail te ae 3) = e'0, Oe Ua nals 

where w=—tt+ut py tet... 

The greatest common measure of A, p, v, etc. is prime to m: con- 

sequently there are positive integers &, 7, ¢, etc. such that 

E+ pnt vl+...21 (mod 7) 

and if we put G=0,5070,5., : 

6 is a quantity which does not vanish and is such that 

5 (6,0-") = 0,6-", 

Consequently C= Tie (¢=1, 2,...2-1) 

where /; is rational ; and 

NY; —5 Cy =f Der" 0; 

=—C, =f Se * 72.6 

with On = R, 

where £# is a non-vanishing quantity, rational in the new field. 

34, Since s(0,”)=«*6,”, the lowest power of 4, which is rational 

is determined by the congruence 

Av = 0 (mod 7) 

or x=0 (mod 2/d) 

where d=dv(n, ). On account of A being prime to p, d is also prime 

to p, and we may write 
n/d = p*l, 

where /, is an integer. If we put 

6,1 = da, 

then oy =T 

3 M, 3 
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where 7’, is rational, and 
8 (dy) =€7"rdy. 

We may in the same way derive from 6,, @,, etc. quantities 

du, dy, etc. such that 

oh CO oa Re 

S(du)=e"™* hy, S(P,) =e-M" hy... 
and so on. 

The integer /, is prime to p, m, is prime to g, and so on: hence we 
can find integers & 7, ¢, etc. such that 

LAE+ Mmpyntnyvet+...= 1. (mod 2) 

Now 5 (4; Pr “hy by. 2 = "Ob." bu by * 

where u=—t+hrAw + mpyt+mvet+...; 

so that w= 0 (mod n) if 

Dy Uf, By oa Vey Nt ee 

Consequently, if we put 

p ae pr? py” Deas 

then 6,=8,¢" 

where S; is rational : 

na, + =S8,6+8,¢'+...+5,¢°" 2a (1), 

and d,, ¢,, etc. are determined by the binomial equations 

Oe Sed ee 
the degrees of which are the powers of primes which occur in n. ~ By 
giving ¢,, $%,, etc. all their different values, ¢ assumes m different 

values, and if these are substituted in (1), we get all the roots of the 
given equation. Of course the adjunction of the quantities da, o,, ete., 

is equivalent to the adjunction of the single quantity 6 which is 

determined by a binomial equation of degree »; but the equations 

which determine ¢,, etc. are all lower than the one which determines 06. 

In this respect the last form of the solution may be considered the 
simpler one. All this illustrates the fact that what is to be called the 

“simplest” solution of an equation is partly a matter of convention. - 
Thus, again, if, in the present case, we solve the equation by a chain 

of Galoisian auxiliaries, they will all be of prime degree, and for each of 
them one at least of the quantities 6; must be different from zero, so 
that Weber’s supplementary transformation is unnecessary. In these 
respects the solution is the simplest of all: on the other hand, just 

because the expressions for the roots are more explicit, they are more 
complicated in appearance, { 

\ 

\ 
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35. In the solution of the general cyclic equation complex roots 
of unity appear as auxiliary irrationalities. These roots of unity are 
themselves the roots of cyclic (or Abelian) equations, and it is natural 
to inquire how far the solution of these special equations can be carried. 

If N = Py po --- Dr 

where p,, #2, etc. are powers of different primes, the complex roots of 

a” =1 may all be expressed in the form 

i pea oa 
where a, 8, ... A are roots of 

EA Lee eee bean railed Be 

so that it is sufficient to consider the case in which z is a power of a 

prime. 
We shall begin by supposing that n = p, an odd prime ; the equation 

to be solved is therefore 

F(a) =a" +a? +...40+1=0. 

If » is any one of its roots, the others are 7’, 7°,...7?-. These 

may be expressed in a more convenient form as follows. Let g be a 
primitive root of p; that is to say, a primitive root of the congruence 

get=1. (mod p) 

Then 1, g, g’, ... g?~* form a complete set of residues of p, and if we 

write 
r=1* 

the roots of f(a) will be denoted by suffixes in such a way that 

Tin =r. 

In this notation, every integral function of the roots which is 
unaltered in value by the substitution 

BAT yee T oe) 
is rational. 

The function in question can be reduced to the form ¢ (7,), where 
is a rational polynomial. If the substitution s is applied to the original 

form of the function, its effect is the same as changing 7, into 7,’ in 
(7). Hence if A is the value of the function, which by hypothesis is 

unaltered, 
A=¢(n)=$(r2)=$¢(n”) =... 

Bes (77, imc (73) = «s 

: = 5a) + Or) +--+ OO) 

f rational quantity, because symmetrical in the roots of / 

3—2 
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If (v—%v) is a factor of the total resolvent of # and we put 
s’ (0) = Upii, the factor 

W (v) = (V—%) (U— >) «+ (VU — Up-1) 

will be rational, and moreover it will be irreducible, because otherwise 

there would be an identity 

vt — ol (au, +...) +... = (U-%) (YU — Va) (U— Up) 

=o — Pl (nt roy t Paar tee) Hh teh te. 

leading to T+ asit eit =a 

with @ rational, and less than (#—1) terms on the left-hand side. 
This is impossible, because f(a) = 0 is an irreducible equation*. 

Hence y (v) is a primary resolvent of f, and the Galoisian group of f 

is (1, s, s*,... s?-*), so that / is a cyclical equation. We may proceed 
to solve it, either by forming a chain of auxiliary equations, the degrees 

of which are the prime factors of (y — 1), or else by adjoining a primitive 
(p—1)th root of unity, and proceeding as in Arts. 32, 33. 

36. An example of the first method (for p= 7) has been com- 
pletely worked out in Art. 28. In the general case, let p—1=@, 

where ¢ is a prime. Putting 

W= 1 + Te41 $+ eet + ++ + Cpe 

a will be a root of an auxiliary equation 

a(a)=0, 

with rational integral coefficients and of degree e. 
If f= gh, where g is a prime, we put 

BET ge + Vgc eee hoe 

and now # is a root of an auxiliary equation 

6(B)=0 
of degree g, with coefficients which are rational polynomials in a. We 
proceed in this way until all the prime factors of (p — 1) are exhausted. 

A case of historical interest is when p=17. The auxiliary equations. 
are (taking 3 as the primitive root of 17) 

a+a—4=0, 

6? —aB~1=0, 

Dy ~ORy + (ag— a BONE. 
een esi 

* Weber, Algebra, 1. 596; or my Theory of Numbers, p. 186. 
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All these equations, except the last, have real roots, and a, £, y, 8 

can all be obtained explicitly in forms containing real arithmetical 
surds: thus we may put 

Pelee 17 ~14 Jf17+ (34-217) 
Meee Pe 4 ? 

but the expressions for y and 6 are too complicated to be worth writing 
down. 

37. ‘To solve the equation considered in Art. 28 by the method of 

Art. 32, we put 
6, = 97+ w2? — of + wrt — wf? — 7, 

(—w being a primitive sixth root of unity, and the cyclical order of the 
roots of f being 7, 7°, 7°, 7°, r*, 7? when we take 3 as the primitive root 

of 7). It is found by actual multiplication that 

0,7 = (5 — 8w) (r+ 774+ 74-7 — 97° — 1°), 

6,6 =—7(16 — 39w) =(1 + 8w) (2 + 30), 
where it may be observed that in the field (w) the norm of 6,°1s 7%. It 
may also be verified that 

63, = 
08s _ 99 + 390 ps, 

= 12a DAD 
so that finally 

ere 0) 2-0 8 + 3w 

ein 7 a 

hs. 18 + 19» % 55 + 39w 
74 

6," 7 6°. 6,’ 

38. The simplest way of calculating the quantities 0; is the 
following. If % is any one of the numbers 1, 2, 3, ... (p—3), the 
product 6,6, is not rational, and its quotient by 6,,,; 1s equal to 

the coefficient of 7 in the product 6,6, after reducing it by first 

replacing all powers of » higher than r?-' according to the formula 

pr? —y> and then replacing any rational term a@ by its equivalent 

value 
—a(rtr +... 47°), 

Now 0,0, =Sendathinddpatd (gq, b=1, 2,...p—1) 

The only pairs (a, 6) which contribute to the coefficient which we wish 
to find are those for which 

at+b=p, 

a+b=p+l. 
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The second set contributes, after the first reduction, a coefficient of 

r which is 
Sieind a+h ind (p+1-a) (a=2, .»p—1) 

the other set, after the second reduction, contributes 

Sind ath ind (p— a). (a=1, 2, ..p—1) 

Since ind (p—a) =ind (—a@) 

=} (p—1)+inda, 
the sum last written 

=p—1 
— ¢ft(p-1)" 3 _ (+1) indo _(); 

a=1 

0,4, 
Gras 

and hence so Se a RRS ee (a=2, 3,...p-1) 

On the other hand, if h=p-— 2, then 6,6, is rational. Its value may 
be written in the form | 

6,659 aS > ind a+(p—2) ind b pito 

ak > ind a—ind b gut 

since e?-!=1. Now if we put a = ¢b (mod p), we obtain the equivalent 
expression ~— Scind t poll +0). (b,:t = 1 Spee 

The terms for which ¢ =p -— 1 contribute 

(81) eva ees Diiies 
for any other value of ¢ 

Sp(lt9d pitt {ye (p—1) —l} ‘ee 

b 
pitt Pin, 1 1, 

hence the value of all the remaining terms 

and finally 6,0). =— p. 

This, together with 

O16, _™- 3 eind m+h ind (p+1—m) [heads A ae 

Ons m=2 

enables us to find the values of @,, 4, ... 9)» with great facility. Of 
course the indices of the powers of ¢ are reduced, at the first opportunity, 
to their least residues, mod (p—1). \ 
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As an example, when p=7, we construct the table of indices for the 
primitive root 3:— 

Ln sts ee 

ind m Grek se o4 awe 

ind (8 — m) rte am: Me Bee 

and hence find 
; 6, 

H=S@+1l+€@+1l+e&=3+4., 
9 

6,0 
aoe +e +1 Pet = 1— 20, 
6s 

6,0. “ 
ae Pt tied t+ e+ E=—1+4+ Qo, 

4 

6,0 ; : aoe te pete +e =~ 3 — wu, 
6; 

0,0, =— 7. 

By multiplication we find that 

6,$=—7(1—2w)’(3 +o)? 

=— 7 (16 —39) 

as before; and all the results of Art. 37 may now be obtained with 

ease. 

39. Suppose now that n = p*, a power of a prime. The primitive 
nth roots of unity in this case are the roots of the equation 

5 cee | 
J (@) = eee 

which is irreducible, and of degree ps"! (p—1). It is also cyclical, 
because there are primitive roots of p* which can be used, as in the 
case when a=1, to fix a cyclical order of the roots, and the arguments 
of Art. 35 may be repeated. ‘he indices of the composition-series will 

be the prime factors of (p—1) and also the prime p repeated (a—1) 
times. Hence if we solve the equation /(a) = 0 by a chain of Galoisian 

auxiliaries, (2 —1) of these will be of degree p, and (Art. 30) no purely 
algebraical solution can replace these auxiliaries by others of lower 
degree. 

epee Pa Pt Pe geht + 1 0) 
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Finally, if 

n= pigs’... d (2) = p*"!(p—1) q8"(q-1)..- 

the primitive mth roots of unity are ¢(2) in number, and they may 
be determined by as many chains of auxiliary equations as there are 

different prime factors of ». The degrees of the auxiliary equations 
are the prime factors of ¢(m). It should be observed that the primitive 
nth roots satisfy an irreducible equation of degree ¢(m), but this. 
equation is not cyclical. 

A specially interesting case is when the auxiliary equations are all 
quadratics. The necessary and sufficient condition for this is that ¢ (7) 

should be a power of 2 ; this is equivalent to saying that 

n= 2*pqr... 

where p, g, 7, etc. are different primes, each of the form 2”+1. When 

n is of this form, and then only, a regular polygon of m sides can be 
inscribed in a circle by means of the rule and compass; because the 
complete solution of #”=1 leads to the determination ef cos 27/n and 
sin 27/n, and conversely, while every construction with rule and 
compass can be put into an analytical form which involves only linear 
and quadratic equations. his remarkable connexion between geometry 

and analysis was discovered by Gauss. 

The values of 2, below 100, which are of this special form are 

3, 4,. 5, 6,° 8,°10, 12, 15, 16, 1732052 ae 

32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96. 

Of these the only ones which are not considered in Euclid’s 
Elements, or at least easily brought into connexion with the cases 
(n= 8, 4, 5, 6, 15) which he does consider, are 17, 34, 51, 68 

and 85. 



CHAPTER IIL. 

ABELIAN EQUATIONS. 

40. A aRoup is said to be Abelian when its elements satisfy the 

commutative law of multiplication: that is to say when ss’=s's, 

sand s’ denoting any two elements of the group. An Abelian equa- 
tion is one of which the Galoisian group is Abelian. Cyclical equations 
form the simplest class of Abelian equations : it will be shown in this 

chapter that every Abelian equation may be solved by means of 
auxiliary cyclical equations. 

It will be supposed, in the first place, that the given Abelian 
equation is irreducible. This being so, its Galoisian group G@ is 
transitive, and will contain a substitution s; which converts 2, into 

any other assigned root 2;. 
The substitutions of G which leave 2, unaltered form a subgroup 

of G. Leto be any one of these: then since s;~! changes a; to a, 

8; 1 oS;(a%) = 08, (a) = 5, {0 (a,)} = ay, 

that is to say, s;-'os; leaves 2; unaltered. But since G is Abelian, 

$s; los; = s;1s;0 =o ; consequently o leaves every root unaltered, and 

is the identical substitution. It ‘follows from this that G is simply 
transitive, and that if 2,, a, ... @, are the roots of the given equation 

fea (Es eis ot, Sg) 

where s; is the definite substitution which changes 2, into 2;. 

Moreover the adjunction of a, reduces G to unity: consequently 
@a, ... &, are expressible as rational functions of 2,, and / COE Oisa 

Penal equation. 

Let the rational expressions of the other roots in terms of a, be 

PUA Ty) fg Us (Bln ee =O (ay) 

To these equations (Art. 17) we may apply any substitution of G: 

thus from 2, =0,(2,), a=, (2) 

we deduce 5%; = 0; (aj), 842%; = 0; (a). 
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But 8; Hi = 8 {8:4} = 8; {82} = 8,04: 

consequently 6; (aj) = 9; (2), 

that is, 0; 19; (a1) | = 8 18; (a)}. 

By applying a Galoisian substitution to this we infer that 

9; 19; (Wx) } = 95 19; (x) } [, 9, &=1, 2, ... 0] 
with the convention that ON top) eres 

In other words, the rational function 

0:19; (x) } — 99:(@) } 

must either vanish identically, or have a numerator which is divisible 

by f(a). In general, it is the latter case that occurs; so we may 
write, to express this fact, 

0; 19; (x) } — 9; 10; (@)} = 0. (mod f(x)) 

Conversely if the roots of a normal equation /(#@)=0 can be ex- 

pressed in a form «; = 6;(#,) such that these congruences are satisfied, 
the Galoisian group is Abelian. For we have arithmetically 

9; 18; (ar) } = 918i (ar) § 

that is 0; (a;) =; (a): 
but since 5:0, =2,=9,(@,), and s2;=> 2; = Ojtae 

it follows that —_s; (s;a@) = 0; (ay), 8; (sj) = 9; (a) 

consequently S; (8,2) = S; (4), 

and in this we may change a, to a, Finally, then, s;s;= s,s; identically, 
and the group of the equation is Abelian. It will be observed that 
this converse theorem is true whether /(2) is irreducible or not. 

41. The simplest way of expressing the elements of an Abelian 
group is by what is called a basis*. The elements s,, so, ... s, form a 
basis of G when every element of G can be expressed in one and only 
one way in the form 

Bi So ae Bp (@< Mm, y¥ SMe, ... <M) 

with z, y,...¢ positive integers, and m2, mz, ...m, the least positive 
integers such that 

Sy a So Ste) ag Sh = 1. 

If desirable, the base may be so chosen that mm, mp, ... Im), are 

powers of primes: of course their product is equal to n, the order of G. 

* Weber, Algebra, 11, 38—45. 
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42. No generality will be lost, and the notation will be much 
simplified if we suppose that the basis of G consists of three elements 
s, t, u, of order a, b, c respectively, so that abc=mn, and all the 

elements of G are expressed by 

sthu®. <a, jJ<b, kee) 

Let p be any prime factor of a; then the substitutions for which, 
in their basic form, 7 is divisible by p form a self-conjugate sub-group 
of G, the index of which, with respect to G, is p. Since p is prime, 
this is a maximum sub-group, which we may denote by Gj, and a 
rational function of the roots for which G, is the invariant group will 
satisfy a rational cyclic equation of degree p. By adjoining one root 
of this equation, the Galoisian group of f sinks from G to G4. 

Suppose, now, that g is a prime factor of a/p: then the substi- 

tutions of G which, in their basic form, are such that 7 is divisible 

by pg, form a maximum self-conjugate factor of G,, which we may 

call G,. A function for which G. is the invariant group in the 
enlarged field will satisfy a rational cyclical equation of order g, and 
the adjunction of one of its roots reduces the group of f from G, to Gy. 

By proceeding in this way, we can exhaust all the prime factors of a 
and reduce the group of f to those substitutions of which the basic 
forms are #/w". If p’ is any prime factor of b we have a group (#w*) 
with 7 divisible by p’, and a corresponding cyclic auxiliary of degree p’, 
and so on. The group of fis finally reduced to unity by a chain of 
auxiliary cyclic equations, the degrees of which are the prime factors 

of n: that is to say, if n=p*g'r? ..., there will be a auxiliary equations 

of degree p, B of degree q, y of degree r, etc. 

43. Asa simple illustration, we will take 

J (@) =a8—a° + wt -2?+1=0 

the roots of which are the primitive 20th roots of unity. If we arrange 
the roots so that 

hee teat te rel oP 

ete e DT teat eT, 

the substitutions of G are 

4 =1, 

S, = (1243) (5687), s, = (1342) (5786), 
8, = (14) (23) (58) (67), 85 = (15) (26) (37) (48), 
S, = (1647) (2835), s, = (1746) (2538), 
ss = (18) (27) (36) (45). 
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If we apply these to the function given by 

Yr = Uy + Wot Uyet+ Ns 

the only new function arising is 

Yo = Us + Ue +X + Xge=—H. 

Hence y is a root of a rational quadratic. ‘To find it, we have, 

with the help of f(r) = 0, 

Wartrr+r +7 =2r' —7 + 2, 

yy? = (277 — 9° + Qr*)? = Sr? [mod f(r) ] 

=—5, 

and the first auxiliary equation is 

yy; +5=0, 
If we now put 

A=mtUM=rtr, BM=mt+eeree 

we find that z.+%=%, “2%.=—1, so that the second auxiliary 

equation 1s 
2°—-y,% —1=0. 

Finally 2, and a, are the roots of 

uv — 2,%,-1=0. 

By actually solving the auxiliaries we see that we may take 

Hea Nga SAS +2(,/5 +1) 
y, =2./5, A= 

and as a verification we observe that the expression last written is 
exp (677/20), one of the primitive roots required. 

The group G' is in this case dibasic : if we put 

§= 8%, t=$5, 

then (s, ¢) is a basis, and the basic representation of G is 

$= 1). 858," Sp = See 

Si= St, Sea 's't, 25, = Stee ee 

with Sori eal 

It is a very remarkable fact, discovered by Kronecker, that if the 

coefficients of an Abelian equation are ordinary real integers, its roots 
can be expressed as rational functions of roots of unity, with real 
rational coefficients. Proofs of this theorem have been given by 
Weber and Hilbert, but they are too long and difficult to be re- 
produced here. 



CHAPTER IV. 

METACYCLIC EQUATIONS. 

44. Suppose that p is a prime number, and that g is any one of 
its primitive roots. he numbers (1, 2, 3,... y) form a complete 
system of residues to the modulus p, and we can form a group of 
permutations of these numbers in the following manner. 

Let s denote the operation of changing any residue z into z+ 1, and 

reducing the result to its least positive residue, mod p. Thus 

s(p—l1)=p, s(p)=1, s(1)=2, etc., 

and we may write 
NOV Aan oad © eee On 

Let ¢ denote the operation of changing z into gz, and reducing the 
result to its least positive residue, mod p. ‘Thus 

t(1, 2... 9) =(9, 29,.+-- p—g, p). 

Evidently s is a cyclical permutation of order p; since 

Pel, 235: p= (9, 29", -.. p); 

and g” = 1 (mod p) only when / is a multiple of (p —1), it follows that 
tis of order (p—1). It will be observed that ¢ does not displace p, 
and that like s it is a cyclical substitution. 

It will now be proved that the p (p — 1) operations 

ps fa m=1,2,...p 

get n= 1,2, 0. inl 
form a group. 

We have ts’ (z) =s° (gz) = ge +e 

=9 (¢+1) 

provided that l=cg?, 
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Giving / its least positive value we infer that 

Os (2) =st(z), 

and SC. SV = SUS Pa eee 

Since a, 6b, c, d may be any four integers, this proves that the 

operations form a group. For convenience, it will be called the 
metacyclical group, mod p, and the reference to p may be omitted when 
no mistake is likely to arise. 

45. There is another way of regarding the group, more convenient 

for some purposes, and representing the group as a set of linear 

substitutions. We have 

st! (z) = go" (2+ @) 

=lz+m, 

provided that geal, g’u=m. (mod p) 

If # and y are given, the last two congruences determine /, m 

uniquely to the modulus p. Conversely if /, m are given and J is 
prime to p, # and y are uniquely determined to the moduli p, (p—1) 
respectively. ‘hus the group may be represented by the substitutions 

teeny bale ed 
m=1, 2,...p 

and in this form may be called the integral linear group. 
The group is doubly transitive : that is to say, there is a definite 

substitution which converts any two given residues a, 8 into any two © 

other given residues y, 6 ‘This follows from the fact that the 
congruences 

lat+m=y, IB+m=8 | (mod p) 

admit of one and only one solution, because 

(a—B)l=y-4, 

and (a —f), (y—8) are both prime to p. 
As an example, let p= 7, g=3, and let it be required to find the 

operation of the group which interchanges 1 and 2. The congruences 

l+m=2, 2l+m=1 (mod 7) 

lead to /= 6, m =8, and the required operation is (%, 62+ 3), or, in 
the other notation, s*¢*. As a verification 

s*(1, 2, ... 7)=(5, 6, 7, 1, 2, 3, 4), 
# (5, 6,.7, 1, 2; 3)74)=(2,.1) 1, 65.5, 4 
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46. It has been shown that 

f2s¢ = Cdod 

where / is different from c, while the index 6 remains unaltered. It 

follows from this that if d is any factor of (y—1), including unity and 
(p —1) itself, and if p — 1 = de, the operations 

gimgnd i? =, 23 ase 

n=1,2,...¢@ 
form a group of order pe. 

This group is self-conjugate in the metacyclic group, because there 
is an integer 7 such that 

> 

st? d gin gna : A ia as gightnd—b _ sit”. 

Let us put 

P(p-l=h, p—1=pigi =pipde= --- =PiPr ++» Pry 

where ;, J2,--.p, are the prime factors of (p—1). Then we have 
a composition-series 

Gi, Gog Ong» 3 Gar Cys 1, 

with indices Dis Pos +++ Pr» Ps 

the notation being such that Gp, means the group of which the 

operations are 

gi” {Ps Pan. Di ae | Pa ioe P 
n=l, 2, eat 

In particular, G, means the cyclical group (1, s, s*, ... s?~*). 

47. Suppose now that we have an equation of prime degree, and 
that its roots are 2, @,...@%). We obtain a group of permutations of its 

roots by applying to their suffixes the operations of the metacyclic 
group. If this is the Galoisian group of the equation, the equation is 

said to be metacyclic. An equation of this kind can be solved by a 
chain of auxiliaries, each cyclical and of prime degree. ‘That the 

auxiliaries may be taken of prime degree follows from the composition- 

series just given for G,: that they are cyclical may be inferred from 

the fact that they are normal as well as of prime degree, or again from 

the fact that Gp, , + Gpq; 18 holoedrically isomorphic with the cyclical 

group 
CPR ert eres), 

‘ nere d =Pipe2--- Pi-1 (cf. Art. 23). 
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48. Kronecker has put the solution of a metacyclic equation of 
prime degree into a very interesting form, which is analogous to that 
given for cyclical equations in Arts. 32-4. Before reproducing it, 

a few explanations and lemmas will be necessary. 

As in Art. 32, we take «, a primitive pth root of unity, and write 

O,= 2, + Hy, +... + PU ee a) 

If s, ¢ are the generators of the metacyclic group, 

§ (O,) = Se 4,15 =e *O, 

as before: to find the effect of ¢, we observe that 

Et (O,) = Say = 3H ag = Oy, 
v v 

where / is determined by the congruence 

gh = 1, (mod p) 

leading to h=9-. (mod p) 

With this value of t (O,) = #06, 

It is convenient now (cf. Art. 35) to introduce a slight change of 

notation. We shall write 

35 = Oi [i=0, 1, 2, ... (p — 2)] 

on the understanding that @,: means 6,, where 7 is the least positive 
residue of g’ to the modulus py. We also make the convention that for 
any positive integers m, 7, 

Sm z= ny 

provided that mM=n. (mod p— 1) 

Thus there are only (p — 1) distinct quantities 5;, and these are the 
same as the quantities 6; in a different order: in particular, 

6, 35,5 5,20 Se 
The effects of s and ¢ upon 3; can be found from previous formule : 

thus 
s (3;) = eon 

t (Si) = Pict sy athe 

Let us now write 

=a, Ava tei, «> i= Suave’, ope ee 

Then sf)=h, 

and t(f)= fs ern ae 

3 S34 =Sfi-; 
with the special case 

t (fy) =Sp-2 
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Consequently any rational cyclical function of fA, A, A, --» Sp-2 is 

unaltered by s and ¢: the quantities f; are therefore the roots of a 
rational cyclic equation of degree (p—1). The change of « to & 

converts jf; into /;.,; hence it follows that when the cyclical equation 

aforesaid is reduced by means of the equation satisfied by «, the 
imaginary root of unity will disappear. In other words we have 
identically, after this reduction, 

(f—fo) SA) -» (f—Sp—2) = fP 1D + my fe? + + My—is 

where m, Mz, ... Mp-; are formally metacyclic functions of 2, a, ... Lp, 

and have rational values when the given equation is metacyclic. 
Suppose that we have a set of quantities $,, #1, ... dp-2, each of 

which is rational in ¢, 2, #2, ... 2, and which also satisfy the following 

conditions :— 

Pettey, >. Spo) =, $i, ->. Spa; 

(2) t (po, Pi, ++ Pp-2) =Pp—2, Poy Piy +++ Pp-s 5 

(3) the change of « into &” produces the same cyclical permutation 
ae 

(4) cyclical functions of ¢, $;, .-. dp» are metacyclical functions 

of @, @, .-. Zp, and can be expressed in a form which is free from «. 

Then by arguments precisely similar to those employed in Arts. 7, 
24 it may be proved that 

$= R (fi); (¢=0, if 2, «+s P—2) 

where £# is a rational function free from «, and the coefficients of the 

powers of /; are metacyclic functions of a, a, ... Xp. 

49. From the equations which express the quantities /; in terms 

of the quantities 3; we can eliminate all the Ss except 3 in the 
following manner. Raise the first equation to the power g?-*, the 

second to the power g?~*, etc., and multiply all the results together : 

observing that 3,-,=%, we have 

er ee Ler an FO sa MOF ef aN, he (1). 

The primitive root g may always be chosen in such a way that 

Vel =p kp), 
where & is a positive integer. Supposing this done, 

Si aS P+ (S0'”)?. 
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Now the quantities 3,”, 3”, ... 3”. satisfy all the conditions 

enumerated in the latter part of Art. 48, so that we may put 

Sh = BR (fy) ++i -onsseeeeasee (2); 

where # is a rational function of the nature explained above 

The positive integers 7), 72, ... 7-2 can be uniquely determined so 

that 
PP =Yp-2P +Tp-2, J? =Y-3P + Tp-s, ete. 

with 0<",<p (¢ #1, 2.2. p— 2) 

and the quantities g; positive integers or zeros. 
If, now, we write, as an abbreviation, 

Ky= RCA) Sethe tee (3), 

we obtain from (1), after multiplying both sides by 3,"”, 

3 = KP frp fie-8 ... fg gene (4). 

From this it follows that 

SP = KP f[7-3f 0? . Sag Bae te (5), 

where K; is derived from K, by changing fy, A, fo -.. into fi, fin, 
Fiza, --- respectively. 

The relations (1), (2), (4), (5) are all reducible to identities, whatever 
Ly, La, ++» Lp may be, solely in virtue of the equation satisfied by «, 

and the definitions of 5;, fi, etc. If 2, a, ... @ are the roots of a 

metacyclic equation with numerical coefficients, /,, /1, --- fp-2 are the 

roots of an auxiliary cyclical equation with rational coefficients. By 

the adjunction of /, the other roots become rational, and finally, if 
we put 

T= Wi 

a definite pth root of /;, we have 
= — soa 7 p-277p— 

Yor Veeclomaeh Oe Na =; = — 0, + mae 3 a VS Sasa ie Ti+p—2° 

If, in the expression on the right, we -give to each quantity 7; any 

one of its p different values, we only obtain p different expressions on 
the whole: thus the formula may be used to determine any root of the 
given equation, and it does not lead to any value of 2, which is not a 
root. 

50. When p=3, the metacyclic group consists of all the per- 
mutations of three things: hence the general cubic equation is 
metacyclic. ‘T'o solve it by Kronecker’s method we take g =5, 

J) =a+ 0B + wy, J =a+ 0B + wy, 

K= 30; A= S31. 
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With the notation of Art. 4, we find that f,, 7, are the roots of 

ep eth Gadd) fa BM): th. cock ved ore theue: Ce 

Moreover ee | 

SS i Pa Etrin jy oble ie Meee haere a (2), 

and we have now to express 3,° in terms of f,. To do this by the 
general method is a good exercise; but it is simpler to proceed as 
follows. We have ™ 

> (32 + 5,5) (3,8—5,°) A 

ee sy RON 8): 
hence A(35—- 3) = BA fh) = Be (Ath 2h) 

= A®-2R°- 2B’ f,, 

IOS 9 eae 
et 4G) 84 A= 3). 

If we write rests bo 

we obtain from (2) and (3) 
2 D3 __ ps3 2 23 RL fA BBY 2, 9, aA FA BAY, 

To put the solution into its simplest form, we must express the 
multipliers of r)’r, and 7,’7) as linear functions of f, and f, respectively. 
The final result is 

B(B*f\— A?+ B*) , 
Se par ea a 

B(Bf—A2+ B) , 
a = TT), 

J 

82 =—C + Jy t Vy. 

This gives the solution in a definite form whenever the values of A 

and B are both different from zero. When A =0, the expressions for 
5, and 3, assume the indeterminate form 0/0: in this special case the 
cubic has the rational root —¢,/3, and the others are the roots of a 
rational quadratic. When B= 0 the cubic may be written 

(32 + 6)? +63 —27¢s, 

and is cyclical. Finally, when A= B8B=0 the cubic has three equal 
roots. 

51. It is an interesting problem to find the most general form of 
a metacyclic equation of the fifth degree. 'I'o do this, we must first 
find the most general form of a cyclic quartic. There will be no real 
loss of generality if we suppose the sum of the roots of the quartic to 

4—2 
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be zero; assuming this, there will be four rational quantities 0, c, d, e 

such that, 2 being a root of the required quartic 

“v=b0+cP+d0, H=<e. 

The elimination of 8 leads to the required equation in the form 

at —2 (2bd + c*) ea? — 4 (b? + de) cow 
—[b*- 2b’? - 4be'd + c)e+ de) e=0. 

Since (bd +d) = 2hde + (b? + de) & 

we may write 
a= crJlet J/(2bde+ (b> + de), /e), 

=—¢,/e+ /(2bde — (b+ de)./e), 

a3= CrJe—,/(2bde+ (b? + de), /e), 

v,=—CJe—/(2bde—(b? + de), /e). 

By a change of notation, these expressions may be put into other 
equivalent forms. ‘To make the formula absolutely general, an arbitrary — 
quantity a may be added on the right-hand side, and the quartic 
modified by changing x into (w—a). ‘The quartic is then cyclical in 

the field (a, 0, ¢, d, @). 
Now let 7, m, », p, g be any rational quantities ; and let 

Y= Ti? (2 = xe 25 3, 4) 

FT (@) = la? + ma? + nx + p, 

E =f (#1) TPT T3 Ty +f (a) Ts TET 

+f (as) t8retP ty +f (4) THT Ge Ts + G- 

Then 2, @, 23, % being the roots of a cyclic quartic as previously 

constructed, € will be a root of a rational quintic which is metacyclic 
in the field (a, b, c, d, e, 1, m, n, p, ). 

It is supposed here that the notation for the jon of the quartic is 
so arranged that its Galoisian group consists of the cyclical permuta- 
tion (2,%,03;7,) and its powers. ‘This having been done we may give- 

each of the quantities 7; all its five values, without obtaining more than 
five values for €& here will generally be five different values: but 

there may be repetitions for particular values of (a, b, ... ¢). 

52. The general quintic can be transformed, with the help we 
solvable equations, to the standard form 

and if this is metacyclic its roots can be actually found in the following 
manner. 
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The generators of the metacyclic group may be taken to be 

ent bao4o err 240) a): 

and if we put e = eens, 

bh = LyL_+ LoL + Ll, + Uys + UL, 

it is found by actual calculation that, in virtue of Sa; = Sa? = Sx? = 0, 

OG Panny Dil Ugly Mn aT nots xk oath Br Pees (2), 

PG eet Us Oy Oe Ue 0 0g =O ee reeiccdeces sata (3); 

6,, 8, etc. having the same meaning as in Art. 48 and elsewhere. If 
we write, for simplicity, 

> /5 =u 

and eliminate @;, 6, from (2) and (3), the result may be written in the 
form 

U0, + u? (8,76,)° + (6,°0,)* — wh," (0,°6,) = 0. 

This is satisfied identically, and in the most general manner, by 
putting 

u=l(P-1)? 

Garena eI Gt Lr baton tn vai dte han es «s+ <5 (4), 

6,56, =P (P-1) ¢ 

/ and ¢ representing two independent parameters. 
Now one root of the quintic is given by 

5a = 6,4+ 6,40; + 6, 

i? e(?—1)7 4 6; i(?-1)# 
— 0, + — a ae —< P (P— 1) re) + Wowie. ees eee ece (5), 

by means of (2) and (4). Eliminating 6, from this and the second of 
equations (4), we find that 

5Pa® —1(1?—1) 4 [25 (2? + 7-1) (0?-41-1)@ 
+ (J? +1) (4+ 221°— 61? — 221 +1) t] =0......(6). 

It will now be supposed that / and ¢ have values such that the 
equations (6) and (1) are equivalent : thus 

1(?-1)(P?+0-1)(? - 41-1) #4+1250=0 ...... Ci) 

1(U4—1) (U4 + 220? - 6]? 2214+ 1) + 31258 =0 ..... (8). 
It remains to make use of the fact that (1) 1s metacyclic. The sub- 
stitution s makes no change in ¢, and in virtue of  a,7;=0 the 
substitution ¢ converts ¢ into —¢: consequently ¢? is a metacyclic 

function, and its value is rational. Denoting it by y, we deduce from 

the first of equations (4) 
(AE a WS iri per Peer ea > (9), 
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and from this and (7) 

y(? +l—1) (? —4l-1) + 250 (0? - 1) =0. 

The solution of this is given by 

yy’ + (25a -3y)y—4y=0 SS ee (10). 
From (7) and (8) 

p= __25(P+1-1) (P= 4-1) 8 bi 
(PLD E5222 =6P = oo woeceseccces R 

and from (4) 
Pe pea Us ate 1° (2-4-1) 0+ 1% U-17P 4B 

(2? + 1)° (24 + 221° — 61? — 2214+ 1)' a 12). 

Equations (10), (11), (12) and (5) contain the complete solution 
of the problem, supposing that the value of y is known; and it will be 
observed that, in accordance with theory, the degrees of the auxiliary 

equations are 2, 2 and 5, the prime factors of the order of the meta- 

cyclic group. 

The quantity y is a root of the equation * 

(y x a)* (7° — Gay + 2507) ='5° 61) “See (13), 

so that the quintic is, or is not, metacyclic in any given field according 
as (13) has or has not a rational root in that field. If the field is 
(a, 8), we must have rational quantities A, » such that 

yoda, B=pa; 
whence 

eee 
(A —1)* (A? - 6A + 25)’ (A — 1)* (A?- 6A + 25)" 

It may be observed that the solution of (6) assumes a very elegant 
form if we put 

l= Q(z) 

where @ (z) is a lemniscate function of z; that is to say, one for which 

J3 >= 0. 

* Weber, Algebra, 1, 675. 



CHAPTER V. 

SOLUTION BY STANDARD FORMS. 

53. As explained in Chap. 1 (Art. 27), the first step towards the 
solution of an equation, after determining its Galoisian group, is to 
construct a series of Galoisian auxiliaries. If the degree of each 

auxiliary is prime, the equation is solvable by radicals, because each 
auxiliary is cyclical; and it can be proved that in no other case is 
the original equation solvable by radicals. The group of each 

auxiliary is simple; hence the only outstanding difficulty is the 

discussion of non-cyclical equations, of which the Galoisian groups 

are simple. The reason why the general equation of order m cannot be 

solved algebraically when n> 4 is that the group of even permutations 
of v things is simple* except when n=4. The cases n=2 and n=8 
are also exceptional, because in the first case there are no even permuta- 

tions, and in the second they form a cyclical group of order 3. 
The most effective way of attacking an equation of which the group 

is non-cyclical and simple is to transform it, if possible, into another 
equation of standard form, for which the solution is known or has been 

tabulated. The spirit of the method may be illustrated, in the first 
place, by considering the cubic equation 

e+ax+b=0, 

where a, 6 denote real positive quantities. If we put 

Qa ky, 3h =4a, -c=4b/k 

the equation becomes 
Ay’ + 8y+c=0; 

and by properly choosing the sign of 4, we can make this 

4y° + 38y—¢=0, 
with ¢>0. If the coefficient of y is—3, and c is a proper fraction, we 
may find a real quantity @ such that cos 36 =c, and then 

y = cos 8, cos (0+ 50), cos (0+ 5) 

* Burnside, Theory of Groups, p. 153. 
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while if ¢>1 we find @ such that cosh 36 =c, and then 

y = cosh 6, cosh (3 + =), cosh (9 + — ). 

On the other hand, if the coefficient of y is +3, we may find @ such 
that sinh 36 =c, and then 

y=sinh 6, sinh (6+ =~), sinh (6 + at). 

Thus in every case the equation is solved with the help of a table of 

trigonometrical or hyperbolic functions. 

54. Several methods of this kind, all indeed ultimately equivalent, 
have been applied to the general quintic. One of these, the solution 

by means of the icosahedral irrationality, will now be given in outline ; 
for further details the reader is referred to Klein’s lectures on the 
icosahedron, and to the treatise on modular functions by Klein and 
Fricke. 

A point on a sphere may be determined by its north polar distance 
6 and longitude ¢. If we put 

6 Ni 
@ : % = tan 5 (cos +7 sin >), 

2, 2, may be taken as homogeneous coordinates defining the position of 
the point. Suppose, now, that we have a regular icosahedron inscribed 

in the sphere, with one vertex at the poimt @=0 and another on the 
great circle ¢=0. If we put 

Sarma + 1lz ee ae) 

the roots of f= 0 correspond to the twelve vertices of the solid. The 
oat form / has two covariants 

HT = — (2,7 + 2%) + 228 (21 29° — MP %!) —494 ez 

T = (2, + 2.8) + 522 (2: 20° — 2°22") — 10005 (a? 2g" + eee 

and the three forms are connected by the identity 

APT =A 128 92: 

The roots of H =0 correspond to the centres of the equilateral triangles 
into which the surface of the sphere is divided by the great circle ares 
into which the edges of the icosahedron are projected from the centre of 
the sphere ; and the roots of Z’=0 correspond to the middle points of 
the sides of these triangles. H is the Hessian of f, and 7 is the 
Jacobian of H and f 

Let AB be a side of any one of the 20 triangles, and CD any other 
of the remaining 29 sides. ‘Then there is a definite rotation about a 
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diameter of the sphere which brings AB into coincidence with CD. 
Similarly there is a definite rotation which brings AP into coincidence 

with DC. We thus obtain 58 rotations, each of which, applied to the 
icosahedron, brings it into a new position in which it occupies the same 
space as before. Besides these, there is the rotation about the diameter 
bisecting AB, which brings A P into coincidence with BA. Altogether, 
there are sixty different positions of the icosahedron, and if we include, 
as the identical operation, that of leaving the icosahedron alone, we 

have a group of 60 rotations which form a group. Each rotation may 
be associated with a linear substitution applied to x, and z. If we put 

e2nt/5 ie 

ete)e+2% m4 —-(e+ €)z 
¥ (a, %) = (2m, 2), b(t, %)= (Sets, 2) D 

then ° = 1, t4 ad 1, 

and s, ¢ generate a group of 120 homogeneous substitutions, with which 

the group of rotations is hemihedrically isomorphic; because if 
(az + Bz, yz, + 8z,) is any one of the substitutions, 

e? (az, + Bz, ya + 822) = (— az,— Bz, — "A — 822) 

which corresponds to the same rotation. Every one of the homogeneous 
substitutions leaves f, H, T absolutely unaltered, but produces a certain 

permutation among their roots. 
Consider, now, the function 7. It evidently has the rational 

factor 
fy = 21" + Ze ; 

and if we apply to this the substitution ¢, we find that ¢(¢,) =—- 4. 
Now the roots of ¢,=0 are the ends of a diameter of the sphere: 

hence ¢ must correspond to a rotation through an angle 7 about a 

perpendicular diameter, the extremities of which are unaltered by ¢, so 
that they are given by 

(e+e )mA+% % 

SCE em 

or py = 2° — 2 (e+ &) 4 %— 27 =0. 

If we put ds = m2 —2 (2+ 8) m2 — 2" 

it is easily proved that the roots of ¢; = 0 are at the ends of a diameter 
perpendicular to each of the two others: hence, writing 

T = $1 hos = Z° + 221" Sq — 521429" — 5%" %e* — 2B? + Zee 

t is a factor of 7 and the roots of t=0 are the vertices of a regular 

octahedron. Since this has 12 edges, there are 24 rotations which 
bring it into coincidence with itself; of these 12 belong to the 
icosahedral group, and form a factor of it. 
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By applying all the icosahedral substitutions to + we obtain five 
different sextics t,(=7), T2, 73, Ts, 7; the product of which is 7. If, 

now, we form the equation 

(r-7,)(T-7T2)...(T-T) =P + p17 +...+9;=0 

the coefficients are binary forms which are invariable for the icosahedral 

group and of degrees 6, 12, 18, 24, 30 respectively. Each coefficient 
equated to zero must give an invariant set of points on the sphere; and 
since there are no sets of 6 or 18 points, and the only sets of 12 and 24 

are given by f= 0, /? = 0, the equation must reduce to the form 

P+afr + bfrr—-T=0 

where a, 6 are numerical. By a comparison of coefficients it is found 
that a =— 10, b = 45, so that finally 

7 —10fr+ 45 f7r — T=0. 

Putting Tif=r 

we find that 7 satisfies the equation 

r (7? —10r + 45)? = 7/f". 

The Hessian of 7 is given by 

= — (2° + 20°) +(e" 2 — 21S") — T (2,820? + 272°) — T Bee — ey ee) 

like 7 this has five one values and is invariant for the same 
group as 7. 

Suppose, now, that /, m are arbitrary numerical quantities, and let 

Lf mf ?rK 

Y= pt pp eee (1). 

This is a function of the ratio z,/z. which assumes only five values 

when the icosahedral substitutions are applied to it. ‘The invariant 
quintic of which it is a root can be found by a process similar to that 

by which the equation satisfied by 7 was constructed. ‘The result is, 

that if we write 
2 

tis = = 1728 —j ria f 

Ai BP pee . 
Ji 2) 

_ 18P m4 In? 20 

Bj oh OEE eee 
Ji Ji 

_ pp 102m 45lm*+m 

Chis eter 1 Ji 

y satisfies the equation 
y + Say’ + bby +¢=0...... 2.1 (3). 
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55. Conversely, suppose a quintic given in the form (3): if we can 
find, in terms of a, 6, ¢ quantities /, m, j, 7; such that j + 7,= 1728, and 

the last three of equations (2) are satisfied, the roots of the given quintic 
will be expressible as rational functions of any one root of the normal 

equation 
H— jf? 

By combining equations (2) we find 

Pees I EN CT T. Be fasts 6-1 vei (4), 

; m°b 3m\3 Es Bees aie 5) 
i( ji Ji (5) 

2 pom 7-3 

J (“= : 4 ae es Ne eae: (6). 
m al Ji Ji 

From (2) and (6), by squaring, 

1 2 
27077? = 172808 + 4327 m+ 27(1 - - ) im? 

1 

5 6 , 482 20 By 8 a 27(2 4 Pmt 4 ae cies 

dh J Ji Ji 

3 2 

be (A : = = fil? +432 m + (18 += + 2) Bm? + $920 pons 
m A Ji 

+ (Sees re) Bm ET AY 1 pelle mM. 
Ji jr 

On subtracting the last equation from the one before, we find that 

(1728 —j,) is a factor of the right-hand side; since 7 +7, = 1728, this 
cancels with the factor 7 on the left hand, and we thus obtain 

la + 8b BOE Ns 

g[270—3(=5~) |-(0-F)- 
Comparing this with (5), we infer that 

1 

1 

. 
2 

21a — oe (la + 8b)? = le— me Sb, tere mura ‘ee 

and by eliminating m°/j, from this and (4) it is found that / satisfies 
the equation 

(a4 + abe — b*) 1? - (11a*®b — ac? + 2b’c) l- (270% — 64076? + bc?) =0 

If D is the discriminant of (3), that of (8) is a7.D/5°, so that 7 is 
rational in the field (a, 6, c¢, ./D, /5). The adjunction of ,/D reduces 

the group of the quintic from the symmetrical group to the alternate 
group of order 60; the quantity ./5 is what is called an auxiliary 

irrationality, and does not affect the group. 
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Having determined /, equations (4) and (5) give 

a rational function of 7; and since 

2 2 

(i+ m= aj — — 81°, 
Ap Si 

we find, after substituting for 7 and m?/j, from (4) and (9), that 

ve a’ l* — 10abl? — (18ae — 456°) 1? + 18bcl — 27¢° 
(ac — b?)l—be 

...(10). 

Thus m can also be expressed as a rational function of 7: of course, the 
above expression, like that obtained for 7, can be transformed in various 

ways by making use of the equation satisfied by J. 
To make this method actually useful for solving numerical quintics, 

we require a table giving the roots of the icosahedral equation 

FIP —-jP=0 

for different numerical values of 7. When D is positive, J, m, j are 

real; but when D is negative, 7 is in general complex, so that a 

complete table would have to include imaginary values of 7. 

56. When a=0, the foregoing results require modification, because 
in this case b+c=0, and the formule (9) and (10) become in- 
determinate. Starting afresh with equations (2), after putting a= 0, 

it is found that if € is a determinate root of | 

be? + PE — 640° =0......: seeder (11) 
we may put we 

bl=-c 

b‘m = 72b’c — FE 

b87 = b' (1728b* + 68c*) — ce? (c* + 810°) € 

b87, = — 63b%ct + 2 (c+ + 810") § 

and the formula (1), combined with H* —j/* = 0, will give the roots of 

the equation 
y+ dby +e=0. 

Another special case that requires examination is when a < 0, and 
equation (8) of last article is satisfied by putting 

(ac — b*) 1 =be. 
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This leads to 3ac=4b?, whence also, supposing that ¢ does not 

vanish, /=4b/a=3c/b. It is found that the equations (2) of Art. 54 
reduce to 

J +), oa 1728, 

\ . 296? 64b?m 
\ i at F  3a3 ? 

| mi? 160? 
A ee Sdae 

The elimination of j and 7, leads to 

9am? + 2°ab*m + 3. 2" (326? — 27a*) b? = 0, 

‘the roots of which are 

| _96b — 82b (27a* — 320°) 

} 

| 
) 

} 

iene 9a’ 

and the corresponding values of 7 are 

0, a (27a* — 160°). 

Now, if we take 7 =0 the auxiliary equation is H=0. Referring 

back to equation (1), Art. 54, we see that this must be rejected, 
because it introduces a zero factor into the denominator of the 
[een for y. Thus the solution is 

_ 4bfk 32b (27a — 8268) fire 
aH ~ 970 HT 

with 27a°H? — 2°? (27a4 — 165°) f° =0 

This may be simplified by putting 

1608 _ 
OTiaa 

thus y= oe Ze {1 +24 (1-20) rt, 

with | Ae ee oa ns 

If a = 2p*, b = 3p*, this solution fails: but the equation is then 

y? + 10p*?y? + 1dp*ty + 6p’ = 0; 
that is to say, 

(y + p)’ (y’ — 8py + 6p*) = 0, 
‘the roots of which are obvious. 
: 

neem A, 

my, 

I te nny 
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8. The very important idea of a field of rationality has been made 
precise by Dedekind (Dirichlet-Dedekind, Vorlesungen iiber Zahlen- 
theorie, Suppl. x1.) and Kronecker (Grundziige einer arithmetischen. 
Theorie der algebraischen Gréssen : Journ. f, Math. 92 = Werke 2). 

15. On the problem of finding the irreducible factors of a poly- 

nomial, see Kronecker (Grundz.) and K. Runge (J. f. Math. 99). 

Special devices often shorten the work in particular cases. 
Another way of finding the Galoisian group is explained by 

O. Hoélder (Encycl. d. math. Wiss. 1, p.486). Except theoretically, the 
problem is not of much interest. 

40. It will be observed that the definition of Abelian equations 
includes cyclical equations as a particular case; it is, however, con- 

venient to retain both terms. 

43, end. For the proof referred to, see Weber's Algebra, m1. 

pp. 736-821 (or Acta Math. 8), and Hilbert, Die Theorie der 
algebraischen Zahlkérper, chap. 23 (Jahresb. d. deutschen Math.- Ver. | 
1894-5). 

47. Weber applies the term metacyclic to all groups for which the 

indices ¢; (p. 21) are primes, and calls the corresponding equations 

metacyclic. Another (perhaps preferable) term is soluble. 'The defini- : 

tion of a metacyclic group given in the text agrees with that of | 
Kronecker (Berl. Ber. 1879). 

55. The algebraical eliminations contained in this article appear — 
to have been first carried out in this way by Gordan (see Klein, Lkos. — 

p. 192, note). 

{ 
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Bachmann’s Kreistheilung : other special applications are 
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(Math. Ann. tv. 284); F. Brioschi (Math. Ann. x1. 109); P. Gordan 
(Math. Ann. xul. 375, xxviut. 152); C. Hermite (C. &. xivi. 508, and 
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(2) Polyhedral equations: H. A. Schwarz (Crelle, Lxxxvit. 139). 
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W. Dyck (Math. Ann. xvut. 507); L. Kiepert (Credle, txxv. 255, and 
Math. Ann. XXvV1., Xxxi1, etc.); Klein (Wath. Ann. xu, xv.); A. G. 

Greenhill (Proc. Lond. Math. Sc.). 

(4) Equation of seventh degree with simple group of order 168. 

F. Klein (Math. Ann. xtv. 428); P. Gordan (Math. Ann. xx. 515, 
XXV. 459). 

(5) Determination of the inflexions of a plane cubic. O. Hease 
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